OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 12 — Apr. 20, 2000
  • pp: 1941–1945

Measurement of ultralow supermirror birefringence by use of the polarimetric differential cavity ringdown technique

Jae Yong Lee, Hai-Woong Lee, Jae Wan Kim, Yong Shim Yoo, and Jae Won Hahn  »View Author Affiliations


Applied Optics, Vol. 39, Issue 12, pp. 1941-1945 (2000)
http://dx.doi.org/10.1364/AO.39.001941


View Full Text Article

Enhanced HTML    Acrobat PDF (103 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a novel technique for measuring ultralow linear birefringence of supermirrors (high-reflectivity dielectric mirror coatings). The polarimetric cavity ringdown technique is used in conjunction with the differential detection scheme with circular polarization to enhance the measurement sensitivity. The technique could, in principle, provide the convenience and reliability of linear detection signals and a reasonable tolerance to experimental imperfections. Phase retardation and orientation of each cavity mirror can be determined separately without the influence of the other mirror. The minimum detectable phase retardation achieved experimentally with this technique is ∼6 × 10-8 rad.

© 2000 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.4040) Optical devices : Mirrors
(260.1440) Physical optics : Birefringence

History
Original Manuscript: January 11, 2000
Revised Manuscript: February 10, 2000
Published: April 20, 2000

Citation
Jae Yong Lee, Hai-Woong Lee, Jae Wan Kim, Yong Shim Yoo, and Jae Won Hahn, "Measurement of ultralow supermirror birefringence by use of the polarimetric differential cavity ringdown technique," Appl. Opt. 39, 1941-1945 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-12-1941


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. L. Gilbert, C. E. Wieman, “Atomic-beam measurement of parity nonconservation in cesium,” Phys. Rev. A 34, 792–803 (1986). [CrossRef] [PubMed]
  2. D. M. Meekhof, P. Vetter, P. K. Majumder, S. K. Lamoreaux, E. N. Forston, “High-precision measurement of parity nonconserving optical rotation in atomic lead,” Phys. Rev. Lett. 71, 3442–3445 (1993). [CrossRef] [PubMed]
  3. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992). [CrossRef] [PubMed]
  4. R. J. Brecha, L. M. Pedrotti, D. Krause, “Magnetic rotation spectroscopy of molecular oxygen with a diode laser,” J. Opt. Soc. Am. B 14, 1921–1930 (1997). [CrossRef]
  5. S. Viciani, P. De Natale, L. Gianfrani, M. Inguscio, “Magnetic-field effects on molecular transitions in the far-infrared region: prospects for more-sensitive spectrometers,” J. Opt. Soc. Am. B 16, 301–307 (1997). [CrossRef]
  6. M. Vallet, F. Bretenaker, A. Le Floch, R. Le Naour, M. Oger, “The Malus Fabry–Perot interferometer,” Opt. Commun. 168, 423–443 (1999). [CrossRef]
  7. Y. Le Grand, A. Le Floch, “Measurement of small optical activities by use of helicoidal waves,” Opt. Lett. 17, 360–362 (1992). [CrossRef] [PubMed]
  8. D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, R. Le Naour, “Small Faraday rotation measurement with a Fabry–Pérot cavity,” Appl. Phys. Lett. 66, 3546–3548 (1995). [CrossRef]
  9. H. R. Bilger, G. E. Stedman, P. V. Wells, “Geometrical dependence of polarization in near-planar ring lasers,” Opt. Commun. 80, 133–137 (1990). [CrossRef]
  10. P. Micossi, F. Della Valle, E. Milotti, E. Zavattini, C. Rizzo, G. Ruoso, “Measurement of the birefringence properties of the reflecting surface of an interferential mirror,” Appl. Phys. B 57, 95–98 (1993). [CrossRef]
  11. S. Carusotto, E. Placco, E. Iacopini, G. Stefanini, E. Zavattini, F. Scuri, “The ellipticity introduced by interferential mirrors on a linearly polarized light beam orthogonally reflected,” Appl. Phys. B 48, 231–234 (1989). [CrossRef]
  12. D. Jacob, F. Bretenaker, P. Pourcelot, P. Rio, M. Dumont, A. Doré, “Pulsed measurement of high-reflectivity mirror phase retardances,” Appl. Opt. 33, 3175–3178 (1994). [CrossRef] [PubMed]
  13. Y. Le Grand, A. Le Floch, “Sensitive dichroism measurements using eigenstate decay times,” Appl. Opt. 29, 1244–1246 (1990). [CrossRef]
  14. R. Engeln, G. Berden, E. van den Berg, G. Meijer, “Polarization dependent cavity ring down spectroscopy,” J. Chem. Phys. 107, 4458–4467 (1997). [CrossRef]
  15. D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, M. Oger, “Supermirror phase anisotropy measurement,” Opt. Lett. 20, 671–673 (1995). [CrossRef] [PubMed]
  16. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988). [CrossRef]
  17. D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997). [CrossRef]
  18. J. W. Hahn, Y. S. Yoo, J. Y. Lee, J. W. Kim, H.-W. Lee, “Cavity ring-down spectroscopy with a continuous wave laser: calculation of coupling efficiency and a new spectrometer design,” Applied Optics 38, 1859–1866 (1999). [CrossRef]
  19. G. Rempe, R. J. Thompson, H. J. Kimble, R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363–365 (1992). [CrossRef] [PubMed]
  20. J. Y. Lee, H.-W. Lee, J. W. Hahn, “Time domain study on cavity ring-down signals from a Fabry–Pérot cavity under pulsed laser excitations,” Jpn. J. Appl. Phys. 38, Pt. 1, 6287–6297 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited