OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 12 — Apr. 20, 2000
  • pp: 2002–2008

Experimental investigation of saturated polarization spectroscopy for quantitative concentration measurements

Thomas A. Reichardt, William C. Giancola, and Robert P. Lucht  »View Author Affiliations


Applied Optics, Vol. 39, Issue 12, pp. 2002-2008 (2000)
http://dx.doi.org/10.1364/AO.39.002002


View Full Text Article

Enhanced HTML    Acrobat PDF (122 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Polarization-spectroscopy (PS) line shapes and signal intensities are measured in well-characterized hydrogen–air flames operated over a wide range of equivalence ratios. We use both low (perturbative) and high (saturating) pump beam intensities in the counterpropagating pump–probe geometry. The effects of saturation on the line-center signal intensity and the resonance linewidth are investigated. The PS signal intensities are used to measure relative OH number densities in a series of near-adiabatic flames at equivalence ratios (ϕ) ranging from 0.5 to 1.5. The use of saturating pump intensities minimizes the effect of pump beam absorption, providing more accurate number density measurements. When calibrated to the calculated OH concentration in the ϕ = 0.6 flame, the saturated PS number density measurements probing the P1(2) transition are in excellent agreement with OH absorption measurements, equilibrium calculations of OH number density, and previous saturated degenerate four-wave mixing OH number density measurements.

© 2000 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(300.6420) Spectroscopy : Spectroscopy, nonlinear

History
Original Manuscript: April 9, 1999
Revised Manuscript: January 3, 2000
Published: April 20, 2000

Citation
Thomas A. Reichardt, William C. Giancola, and Robert P. Lucht, "Experimental investigation of saturated polarization spectroscopy for quantitative concentration measurements," Appl. Opt. 39, 2002-2008 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-12-2002


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Amsterdam, The Netherlands, 1996).
  2. K. Nyholm, R. Maier, C. G. Aminoff, M. Kaivola, “Detection of OH in flames by using polarization spectroscopy,” Appl. Opt. 32, 919–924 (1993). [CrossRef] [PubMed]
  3. K. Nyholm, R. Fritzon, M. Aldén, “Two-dimensional imaging of OH in flames by use of polarization spectroscopy,” Opt. Lett. 18, 1672–1674 (1993). [CrossRef] [PubMed]
  4. K. Nyholm, “Measurements of OH rotational temperature in flames by using polarization spectroscopy,” Opt. Commun. 111, 66–70 (1994). [CrossRef]
  5. K. Nyholm, R. Fritzon, M. Aldén, “Single-pulse two-dimensional imaging in flames by degenerate four-wave mixing and polarization spectroscopy,” Appl. Phys. B 59, 37–43 (1994). [CrossRef]
  6. M. J. New, P. Ewart, A. Dreizler, T. Dreier, “Multiplex polarization spectroscopy of OH for flame thermometry,” Appl. Phys. B 65, 633–637 (1997). [CrossRef]
  7. K. Nyholm, R. Fritzon, N. Georgiev, M. Aldén, “Two-photon induced polarization spectroscopy applied to the detection of NH3 and CO molecules in cold flows and flames,” Opt. Commun. 114, 76–82 (1995). [CrossRef]
  8. K. Nyholm, M. Kaivola, C. G. Aminoff, “Polarization spectroscopy applied to C2 detection in a flame,” Appl. Phys. B 60, 5–10 (1995). [CrossRef]
  9. A. Dreizler, T. Dreier, J. Wolfrum, “Polarization spectroscopic measurement of the NH (A3Π– X3Σ) transition in an ammonia/oxygen flame,” J. Mol. Struct. 349, 285–288 (1995). [CrossRef]
  10. C. F. Kaminski, B. Löfstedt, R. Fritzon, M. Aldén, “Two-photon polarization spectroscopy and (2 + 3)-photon laser induced fluorescence of N2,” Opt. Commun. 129, 38–43 (1996). [CrossRef]
  11. R. E. Teets, F. V. Kowalski, W. T. Hill, N. Carlson, T. W. Hänsch, “Laser polarization spectroscopy,” in Advances in Laser Spectroscopy I, A. H. Zewail, ed., Proc. SPIE113, 80–87 (1977). [CrossRef]
  12. W. Demtröder, Laser Spectroscopy (Springer-Verlag, New York, 1996), pp. 454–466.
  13. T. A. Reichardt, R. P. Lucht, “Theoretical calculation of line shapes and saturation effects in polarization spectroscopy,” J. Chem. Phys. 109, 5830–5843 (1998). [CrossRef]
  14. T. A. Reichardt, W. C. Giancola, C. M. Shappert, R. P. Lucht, “Experimental investigation of saturated degenerate four-wave mixing for quantitative concentration measurements,” Appl. Opt. 38, 6951–6961 (1999). [CrossRef]
  15. R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997). [CrossRef]
  16. K. E. Bertagnolli, R. P. Lucht, M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315–2326 (1998). [CrossRef]
  17. G. Zizak, J. Lanauze, J. D. Winefordner, “Cross-beam polarization in flames with a pulsed dye laser,” Appl. Opt. 25, 3242–3246 (1986). [CrossRef] [PubMed]
  18. W. C. Giancola, T. A. Reichardt, R. P. Lucht, “Multi-axial-mode laser effects in polarization spectroscopy,” submitted to J. Opt. Soc. Am. B.
  19. S. Gordon, B. J. McBride, “Computer program for calculation of chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman–Jouguet detonations,” (NASA, Lewis Research Center, Cleveland, Ohio, 1976).
  20. K. E. Bertagnolli, R. P. Lucht, “Temperature profile measurements in stagnation-flow diamond-forming flames using hydrogen CARS spectroscopy,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 1825–1833. [CrossRef]
  21. R. D. Hancock, F. R. Schauer, R. P. Lucht, R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering measurements of nitrogen and oxygen in a laminar jet diffusion flame,” Appl. Opt. 36, 3217–3226 (1997). [CrossRef] [PubMed]
  22. F. Grisch, B. Attal-Trétout, P. Bouchardy, V. R. Katta, W. M. Roquemore, “A vortex-flame interaction study using four-wave mixing techniques,” J. Nonlinear Opt. Phys. Mater. 5, 505–526 (1996). [CrossRef]
  23. A. McIlroy, “Direct measurement of 1CH2 in flames by cavity ringdown laser absorption spectroscopy,” Chem. Phys. Lett. 296, 151–158 (1998). [CrossRef]
  24. J. Ropcke, L. Mechold, M. Kaning, W. Y. Fan, P. B. Davies, “Tunable diode laser diagnostic studies of H2-Ar-O2 in microwave plasmas containing methane or methanol,” Plasma Chem. Plasma Process. 19, 395–419 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited