OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 13 — May. 1, 2000
  • pp: 2091–2100

Real-time holographic interferometry with double two-wave mixing in photorefractive crystals

Gregor Cedilnik, Matthias Esselbach, Armin Kiessling, and Richard Kowarschik  »View Author Affiliations


Applied Optics, Vol. 39, Issue 13, pp. 2091-2100 (2000)
http://dx.doi.org/10.1364/AO.39.002091


View Full Text Article

Acrobat PDF (830 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a real-time holographic interferometer for which two reference waves of different phases are created by two-wave mixing with a stationary signal wave in a photorefractive crystal. These waves are reconstructions of the stationary signal wave and interfere with the momentary (changing) signal wave in the manner of a holographic real-time interferometer. A fast change (phase or intensity) of the signal wave leads to different intensity changes in both interferograms that are jointly used for evaluation. With an electric dc field applied to the crystal, a high sensitivity for measuring phase changes (down to λ/50, λ = 633 nm) is found, and the sign of the phase change can be determined.

© 2000 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(120.2880) Instrumentation, measurement, and metrology : Holographic interferometry
(190.7070) Nonlinear optics : Two-wave mixing

Citation
Gregor Cedilnik, Matthias Esselbach, Armin Kiessling, and Richard Kowarschik, "Real-time holographic interferometry with double two-wave mixing in photorefractive crystals," Appl. Opt. 39, 2091-2100 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-13-2091


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. K. Rastogi, Holographic Interferometry: Principles and Methods, Vol. 68 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1994).
  2. T. Kreis, Holographic Interferometry: Principles and Methods, (Akademische Verlagsgesellschaft, Berlin, 1996).
  3. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
  4. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems, (Springer-Verlag, Berlin, 1991).
  5. D. Z. Anderson and J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
  6. J. P. Huignard, J. P. Herriau, and T. Valentin, “Time average holographic interferometry with photorefractive electrooptic Bi12SiO20 crystals,” Appl. Opt. 16, 2796–2798 (1977).
  7. J. P. Huignard and A. Marrakchi, “Two-wave mixing and energy transfer in Bi12SiO20 crystals: application to image amplification and vibration analysis,” Opt. Lett. 6, 622–624 (1981).
  8. H. J. Tiziani, “Real-time metrology with BSO crystals,” Opt. Act. 29, 463–470 (1982).
  9. A. A. Kamshilin and M. P. Petrov, “Continuous reconstruction of holographic interferograms through anisotropic diffraction in photorefractive crystals,” Opt. Commun. 53, 23–26 (1985).
  10. X. Wang, R. Magnusson, and A. Haji-Sheikh, “Real-time interferometry with photorefractive reference holograms,” Appl. Opt. 32, 1983–1986 (1993).
  11. L. Labrunie, G. Pauliat, G. Roosen, and J. C. Launay, “Simultaneous acquisition of π/2 phase-stepped interferograms with a photorefractive Bi12GeO20 crystal: application to real-time double-pulse holography,” Opt. Lett. 20, 1652–1654 (1995).
  12. L. Labrunie, G. Pauliat, J. C. Launay, S. Leidenbach, G. Roosen, “Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal,” Opt. Commun. 140, 119–127 (1997).
  13. J. P. Huignard and J. P. Herriau, “Real-time double-exposure interferometry with Bi12SiO20 crystals in transverse electrooptic configuration,” Appl. Opt. 16, 1807–1809 (1977).
  14. R. Magnusson, J. H. Mitchell III, T. D. Black, and D. R. Wilson, “Holographic interferometry using iron-doped lithium niobate,” Appl. Phys. Lett. 51, 81–82 (1987).
  15. G. von Bally, F. Rickermann, and S. Riehemann, “Application of photorefractive crystals in stroboscopic double-exposure holographic interferometry,” in Proceedings of Conference Topical Meeting on Photorefractive Materials, Effects, and Devices, (PR’ 97) (N.p., 1997), pp. 527–530.
  16. D. Dirksen and G. von Bally, “Holographic double-exposure interferometry in near real time with photorefractive crystals,” J. Opt. Soc. Am. B 11, 1858–1863 (1994).
  17. G. S. Ballard, “Double-exposure holographic interferometry with separate reference beams,” J. Appl. Phys. 39, 4846–4848 (1968).
  18. D. Dirksen, F. Matthes, S. Riehemann, and G. von Bally, “Phase shifting holographic double exposure interferometry with fast photorefractive crystals,” Opt. Commun. 134, 310–316 (1997).
  19. M. P. Georges and Ph. C. Lemaire, “Real-time interferometer with BSO crystal using phase-shifting for quantitative deformation measurement,” in Proceedings of Conference on Topical Meeting on Photorefractive Materials, Effects, and Devices, (PR’ 97) (N.p., 1997), pp. 403–407.
  20. H. Rehn, M. Esselbach, R. M. Kowarschik, and K. H. Ringhofer, “Photorefractive novelty filters for transient phase evaluation,” in Optical Inspection and Micromeasurements, C. Gorecki, ed., Proc. SPIE 2782, 730–737 (1996).
  21. D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Marcel Dekker, New York, 1998).
  22. M. P. Georges and Ph. C. Lemaire, “Phase-shifting real-time holographic interferometry that uses bismuth oxide crystals,” Appl. Opt. 34, 7497–7506 (1995).
  23. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  24. D. L. Staebler and J. J. Amodei, “Coupled-wave analysis of holographic storage in LiNbO3,” J. Appl. Phys. 43, 1042–1049 (1972).
  25. G. Cedilnik, A. Kiessling, and R. Kowarschik, “Intensity controlled shaping of the beam profile using three-wave mixing in photorefractive Bi12TiO20,” Opt. Commun. 151, 196–202 (1998).
  26. S. I. Stepanov, “Adaptive interferometry: a new area of applications of photorefractive crystals,” in International Trends in Optics, J. W. Goodman, ed. (Academic, New York, 1991), pp. 125–140.
  27. E. Shamonina, G. Cedilnik, M. Mann, A. Kiessling, D. J. Webb, R. Kowarschik, and K. H. Ringhofer, “Investigation of two-wave mixing in arbitrary oriented sillenite crystals,” Appl. Phys. B 64, 49–56 (1997).
  28. M. Mann, E. Shamonina, and K. H. Ringhofer, “Modelling of two wave mixing experiments in sillenite crystals,” Comp. Phys. Comm. 96, 61–86 (1996).
  29. N. S.-K. Kwong, Y. Tamita, and A. Yariv, “Optical tracking filter using transient energy coupling,” J. Opt. Soc. Am. B 5, 1788–1791 (1988).
  30. K. Walsh, A. K. Powell, C. Stace, and T. J. Hall, “Techniques for enhancement of space-charge fields in photorefractive materials,” J. Opt. Soc. Am. B 7, 3, 288–303 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited