OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 13 — May. 1, 2000
  • pp: 2210–2220

Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information

Pantazis Mouroulis, Robert O. Green, and Thomas G. Chrien  »View Author Affiliations


Applied Optics, Vol. 39, Issue 13, pp. 2210-2220 (2000)
http://dx.doi.org/10.1364/AO.39.002210


View Full Text Article

Enhanced HTML    Acrobat PDF (234 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A modulation transfer function–based optimization method is described that generates optimal spectral and spatial uniformity of response from compact pushbroom imaging spectrometer designs. Such uniformity is essential for extracting accurate spectroscopic information from a pushbroom imaging spectrometer for Earth-observing remote sensing applications. Two simple and compact spectrometer design examples are described that satisfy stringent uniformity specifications.

© 2000 Optical Society of America

OCIS Codes
(110.4100) Imaging systems : Modulation transfer function
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(220.4830) Optical design and fabrication : Systems design
(300.6190) Spectroscopy : Spectrometers

History
Original Manuscript: August 18, 1999
Revised Manuscript: January 21, 2000
Published: May 1, 2000

Citation
Pantazis Mouroulis, Robert O. Green, and Thomas G. Chrien, "Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information," Appl. Opt. 39, 2210-2220 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-13-2210


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. See, for example, M. R. Descour, S. S. Shen, eds., Imaging Spectrometry IV, Proc. SPIE3438 (1998), and previous volumes of the same conference series.
  2. G. Vane, M. Chrisp, H. Enmark, S. Macenka, J. Solomon, “Airborne visible infrared imaging spectrometer: an advanced tool for Earth remote sensing,” in Proceedings of the 1984 IEEE International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 1984), Vol. SP 215, pp. 751–757.
  3. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998). [CrossRef]
  4. T. G. Chrien, R. O. Green, M. L. Eastwood, “Accuracy of the spectral and radiometric laboratory calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1298, 37–49 (1990). [CrossRef]
  5. R. O. Green, “Spectral calibration requirement for Earth-looking imaging spectrometers in the solar-reflected spectrum,” Appl. Opt. 37, 683–690 (1998). [CrossRef]
  6. P. Mouroulis, “Low-distortion imaging spectrometer designs utilizing convex gratings,” in International Optical Design Conference 1998, L. R. Gardner, K. P. Thompson, eds., Proc. SPIE3842, 594–601 (1998). [CrossRef]
  7. D. Kavaldjiev, Z. Ninkov, “Subpixel sensitivity map for a charge-coupled device sensor,” Opt. Eng. 37, 948–954 (1998). [CrossRef]
  8. D. R. Hearn, “Characterization of instrument spectral resolution by the spectral modulation transfer function,” in Earth Observing Systems III, W. L. Barnes, ed., Proc. SPIE3439, 400–407 (1998). [CrossRef]
  9. I. Dror, N. S. Kopeika, “Experimental comparison of turbulence modulation transfer function and aerosol modulation transfer function and aerosol modulation transfer through the open atmosphere,” J. Opt. Soc. Am. A 12, 970–980 (1995). [CrossRef]
  10. L. Mertz, “Concentric spectrographs,” Appl. Opt. 16, 3122–3124 (1977). [CrossRef] [PubMed]
  11. D. Kwo, G. Lawrence, M. Chrisp, “Design of a grating spectrometer from a 1:1 Offner mirror system,” in Current Developments in Optical Engineering II, R. E. Fischer, W. J. Smith, eds., Proc. SPIE818, 275–279 (1987). [CrossRef]
  12. D. R. Lobb, “Theory of concentric designs for grating spectrometers,” Appl. Opt. 33, 2648–2658 (1994). [CrossRef] [PubMed]
  13. F. M. Reininger, M. Dami, R. Paolinetti, S. Pieri, S. Falugiani, “Visible infrared mapping spectrometer–visible channel (VIMS-V),” in Instrumentation in Astronomy VIII, E. R. Crane, D. L. Crawford, eds., Proc. SPIE2198, 239–250 (1994). [CrossRef]
  14. F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J. M. Combes, J. M. Crovisier, T. Encrenaz, J. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peter, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, D. E. Jennings, “VIRTIS: visible infrared thermal imaging spectrometer for the Rosetta mission,” in Imaging Spectrometry II, M. R. Descour, J. M. Mooney, eds., Proc. SPIE2819, 66–77 (1996). [CrossRef]
  15. D. R. Lobb, “Imaging spectrometers using concentric optics,” in Imaging Spectrometry III, M. R. Descour, S. S. Shen, eds., Proc. SPIE3118, 339–347 (1997). [CrossRef]
  16. M. Chrisp, “Convex diffraction grating imaging spectrometer,” U.S. patent5,880,834 (9March1999).
  17. P. Mouroulis, D. A. Thomas, “Compact, low-distortion imaging spectrometer for remote sensing,” in Imaging Spectrometry IV, M. R. Descour, S. S. Shen, eds., Proc. SPIE3438, 31–37 (1998). [CrossRef]
  18. P. Mouroulis, D. W. Wilson, P. D. Maker, R. E. Muller, “Convex grating types for concentric imaging spectrometers,” Appl. Opt. 37, 7200–7208 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited