OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 13 — May. 1, 2000
  • pp: 2221–2229

Infrared intracavity laser absorption spectroscopy with a continuous-scan Fourier-transform interferometer

Jixin Cheng, Hai Lin, Shuiming Hu, Shenggui He, Qingshi Zhu, and Alexander Kachanov  »View Author Affiliations

Applied Optics, Vol. 39, Issue 13, pp. 2221-2229 (2000)

View Full Text Article

Acrobat PDF (162 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-quality broadband infrared high-resolution spectra were obtained by use of the intracavity laser absorption spectroscopy technique with a Ti:sapphire laser in combination with a continuous-scan Fourier-transform (FT) interferometer. With electronic filtering used to smooth out the fluctuations of the laser power, the absorption of atmospheric water vapor in the range of 12,450–12,700 cm<sup>−1</sup> was recorded at a resolution of 0.05 cm<sup>−1</sup>. A signal-to-noise ratio of greater than 300 was observed in this spectrum, corresponding to a minimum detectable absorption of approximately 2 × 10<sup>−9</sup> cm<sup>−1</sup>. Comparison with previous measurements by use of a conventional FT technique shows that this method gives absorption spectra with highly accurate line positions along with reasonable line intensities. Investigation of the evolution of intracavity laser absorption spectra with the generation time is also shown to be possible with a continuous-scan FT spectrometer by use of the interleave rapid-scan method.

© 2000 Optical Society of America

OCIS Codes
(140.3590) Lasers and laser optics : Lasers, titanium
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6360) Spectroscopy : Spectroscopy, laser
(300.6500) Spectroscopy : Spectroscopy, time-resolved

Jixin Cheng, Hai Lin, Shuiming Hu, Shenggui He, Qingshi Zhu, and Alexander Kachanov, "Infrared intracavity laser absorption spectroscopy with a continuous-scan Fourier-transform interferometer," Appl. Opt. 39, 2221-2229 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. L. A. Pakhomycheva, E. A. Sviridenkov, A. F. Suchkov, L. V. Titova, and S. S. Churilov, “Line structure of generation spectra of lasers with inhomogeneous broadening of the amplification line,” JETP Lett. 12, 43–45 (1970).
  2. A. C. Peterson, M. J. Kurilo, W. Braun, A. M. Bass, and R. A. Keller, “Enhancement of absorption spectra by dye-laser quenching,” J. Opt. Soc. Am. 61, 746–750 (1971).
  3. T. W. Hänsh, A. L. Schawlow, and P. E. Toschek, “Ultrasensitive response of a CW dye laser to selective extinction,” IEEE J. Quantum Electron. QE-8, 802–804 (1972).
  4. V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999).
  5. A. Campargue, F. Stoeckel, and M. Chenevier, “High-sensitivity intracavity laser spectroscopy—applications to the study of overtone transitions in the visible range,” Spectrochim. Acta Rev. 13, 69–88 (1990).
  6. V. M. Baev, T. P. Belikova, E. A. Sviridenkov, and A. F. Suchkov, “Intracavity laser spectroscopy with continuously and quasicontinuously operating lasers,” Sov. Phys. JETP 47, 21–29 (1978).
  7. M. Chevenier, M. A. Mélières, and F. Stoeckel, “Intracavity absorption line shapes and quantitative measurements on O2,” Opt. Commun. 45, 385 (1983).
  8. M. A. Mélières, M. Chenevier, and F. Stoeckel, “Intensity measurements and self-broadening coefficients in the γ band of O2 at 628 nm using intracavity laser-absorption spectroscopy (ICLAS),” J. Quant. Spectrosc. Radiat. Transfer 33, 337 (1985).
  9. D. A. Gilmore, P. V. Cvijin, and G. H. Atkinson, “Intracavity absorption spectroscopy with a titanium:sapphire laser,” Opt. Commun. 77, 385–388 (1990).
  10. A. Kachanov, A. Charvat, and F. Stoeckel, “Intracavity laser spectroscopy with vibronic solid-state lasers. II. Influence of the nonlinear mode coupling on the maximum sensitivity of a Ti:sapphire laser,” J. Opt. Soc. Am. B 12, 970–979 (1995).
  11. B. Kalmar and J. J. O’Brien, “Quantitative intracavity laser spectroscopy measurements with a Ti:sapphire laser: absorption intensities for water vapor lines in the 790–800 nm region,” J. Mol. Spectrosc. 192, 386–393 (1998).
  12. A. del Olmo, C. Domingo, J. M. Orza, and D. Bermejo, “FT intracavity laser spectroscopy: the B-X transition of Cl2,” J. Mol. Spectrosc. 145, 323–330 (1991).
  13. C. Domingo, A. del Olmo, R. Escribano, and J. M. Orza, “Fourier transform intracavity laser absorption spectra of 6ν1 band of CDH3,” J. Chem. Phys. 96, 972–975 (1991).
  14. K. Strong, T. Johnson, and G. W. Harris, “Visible intracavity laser spectroscopy with a step-scan Fourier transform interferometer,” Appl. Opt. 36, 8533–8540 (1997).
  15. P. Biggs, G. Hancock, D. Heard, and R. P. Wayne, “A step-scan interferometer used for time-resolved FTIR emission spectroscopy,” Meas. Sci. Technol. 1, 630–636 (1990).
  16. V. Petricevic, S. K. Gayen, and R. R. Alfano, “Near infrared tunable operation of chromium doped forsterite laser,” Appl. Opt. 28, 1609–1611 (1989).
  17. D. A. Gilmore, P. V. Cvijin, and G. H. Atkinson, “Intracavity laser spectroscopy in the 1.38–1.55μm spectral region using a multimode Cr4+:YAG laser,” Opt. Commun. 103, 370–374 (1993).
  18. D. Welford and P. F. Moulton, “Room-temperature operation of a Co:MgF2 laser,” Opt. Lett. 13, 975–977 (1988).
  19. M. P. Frolov and Y. P. Podmarkov, “Intracavity laser spectroscopy with a Co:MgF2 laser,” Opt. Commun. 155, 313–316 (1988).
  20. V. R. Mironenko and V. I. Yudson, “Quantum statistics of multimode lasing and noise in intracavity laser spectroscopy,” Sov. Phys. JETP 52, 594–602 (1980).
  21. V. R. Mironenko and V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34, 397–403 (1980).
  22. S. A. Kovalenko, “Quantum intensity fluctuations in multi-mode cw lasers and maximum sensitivity of intracavity laser spectroscopy,” Sov. J. Quantum Electron. 11, 759–762 (1981).
  23. V. M. Baev, G. Gaida, H. Schroder, and P. E. Toschek, “Quantum fluctuations of multi-mode laser oscillator,” Opt. Commun. 38, 309–313 (1981).
  24. A. A. Kachanov, V. R. Mironenko, and I. K. Pashkovich, “Quantum threshold of the sensitivity of an intracavity traveling-wave laser spectrometer,” Sov. J. Quantum Electron. 19, 95–98 (1989).
  25. P. Fellgett, “Theory of multiplex interferometric spectrometry,” J. Phys. Radium 19, 187–191 (1958).
  26. F. Stoeckel, M. A. Mélières, and M. Chenevier, “Quantitative measurement of very weak H2O absorption lines by time-resolved intracavity laser spectroscopy,” J. Chem. Phys. 76, 2191–2196 (1982).
  27. H. Lin, X. G. Wang, S. F. Yang, S. M. Hu, and Q. S. Zhu, “Study of an intracavity laser absorption spectrometer incorporated with the Fourier transform spectrometer,” Chin. J. Lasers 25, 1008–1012 (1998).
  28. A. Kachanov, A. Charvat, and F. Stoeckel, “Intracavity laser spectroscopy with vibronic solid-state lasers. I. Spectrotemporal transient behavior of a Ti:sapphire laser,” J. Opt. Soc. Am. B 11, 2412–2421 (1994).
  29. J. J. Sloan and E. J. Kruus, “Time-resolved Fourier transform spectroscopy,” in Time Resolved Spectroscopy, R. J. H. Clark and R. E. Hester, eds. (Wiley, New York, 1989), pp. 219–253.
  30. P. R. Griffiths and J. A. de Haseth, “Chemical analysis,” in Fourier Transform Infrared Spectrometry, P. J. Elving and J. D. Winefordner, eds. (Wiley, New York, 1986), p. 15.
  31. H. Weidner and R. E. Peale, “Time-resolved Fourier spectroscopy for activated optical materials,” Appl. Opt. 35, 2849–2855 (1996).
  32. A. S. Zachor, I. Coleman, and W. G. Mankin, “Effect of drive nonlinearities in Fourier spectroscopy,” in Spectroscopic Techniques, G. A. Vanasse, ed. (Academic, San Diego, Calif., 1981), Vol. 2, Chap. 3, pp. 1–62.
  33. H. Weidner and R. E. Peal, “Event-locked time-resolved Fourier spectroscopy,” Appl. Spectrosc. 51, 1106–1112 (1997).
  34. E. N. Antonov, A. A. Kachanov, V. R. Mironenko, and T. V. Plankhotnik, “Dependence of the sensitivity of intracavity laser spectrometer on generation parameters,” Opt. Commun. 46, 126–130 (1983).
  35. R. A. Toth, “Measurement of H216O line positions and strengths: 11610 to 12861 cm−1,” J. Mol. Spectrosc. 116, 176–183 (1994).
  36. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
  37. The function form for Norton–Beer–Weak is W(Δ) = c0 + c1[1 − (Δ/Δm)2] + c2{[1 − (Δ/Δm)2]}2, where c0 = 0.34809, c1 = −0.08758, and c2 = 0.70348. Δ is the OPD value, and Δm is the maximal OPD.
  38. P. L. Ponsardin and E. V. Browell, “Measurements of H216O line strengths and air-induced broadenings and shifts in the 815-nm spectral region,” J. Mol. Spectrosc. 185, 58–70(1997).
  39. G. Guelachvili, “Distortions in Fourier spectra and diagnosis,” in Spectroscopic Techniques, G. A. Vanasse, ed. (Academic, San Diego, Calif., 1981), Vol. 2, Chap. 3, pp. 127–160.
  40. The function form for the Blackman–Harris three term is W(Δ) = a0 + a1 cos(2πΔ/Δm) + a2 cos(4πΔ/Δm), where a0 = 0.42323, a1 = 0.49755, and a2 = 0.07922.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited