OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 13 — May. 1, 2000
  • pp: 2235–2244

Monte Carlo diffusion hybrid model for photon migration in a two-layer turbid medium in the frequency domain

George Alexandrakis, Thomas J. Farrell, and Michael S. Patterson  »View Author Affiliations

Applied Optics, Vol. 39, Issue 13, pp. 2235-2244 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (150 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a hybrid Monte Carlo (MC) diffusion model for calculating the spatially resolved reflectance amplitude and phase delay resulting from an intensity-modulated pencil beam vertically incident on a two-layer turbid medium. The model combines the accuracy of MC at radial distances near the incident beam with the computational efficiency afforded by a diffusion calculation at further distances. This results in a single forward calculation several hundred times faster than pure MC, depending primarily on model parameters. Model predictions are compared with MC data for two cases that span the extremes of physiologically relevant optical properties: skin overlying fat and skin overlying muscle, both in the presence of an exogenous absorber. It is shown that good agreement can be achieved for radial distances from 0.5 to 20 mm in both cases. However, in the skin-on-muscle case the choice of model parameters and the definition of the diffusion coefficient can lead to some interesting discrepancies.

© 2000 Optical Society of America

OCIS Codes
(170.5280) Medical optics and biotechnology : Photon migration
(290.1990) Scattering : Diffusion

Original Manuscript: September 16, 1999
Revised Manuscript: January 21, 2000
Published: May 1, 2000

George Alexandrakis, Thomas J. Farrell, and Michael S. Patterson, "Monte Carlo diffusion hybrid model for photon migration in a two-layer turbid medium in the frequency domain," Appl. Opt. 39, 2235-2244 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Mourant, T. M. Johnson, G. Los, I. Bigio, “Non-invasive measurements of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements,” Phys. Med. Biol. 44, 1397–1417 (1999). [CrossRef] [PubMed]
  2. M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematoporphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987). [CrossRef] [PubMed]
  3. R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of non-invasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997). [CrossRef] [PubMed]
  4. S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995). [CrossRef]
  5. T. J. Farrell, M. S. Patterson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992). [CrossRef] [PubMed]
  6. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996). [CrossRef] [PubMed]
  7. M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991). [CrossRef] [PubMed]
  8. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994). [CrossRef]
  9. S. Fantini, M. A. Franceschini, E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11, 2128–2138 (1994). [CrossRef]
  10. A. Kienle, M. S. Patterson, “Improved solutions for the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 (1997). [CrossRef]
  11. P. L. Williams, R. Warwick, “The integument,” in Gray’s Anatomy, 36th ed. (Churchill Livingstone, Edinburgh, UK, 1986), pp. 1216–1222.
  12. R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, A. E. Sichirollo, “Extinction and absorption coefficients and scattering phase functions of human tissues in vitro,” Appl. Opt. 28, 2318–2324 (1989). [CrossRef] [PubMed]
  13. S. R. Arridge, “Why optical tomography is hard,” in Biomedical Optics: New Concepts in Therapeutic Laser Applications, Novel Biomedical Optical Spectroscopy, Imaging, and Diagnostics, Advances in Optical Imaging, Photon Migration, and Tissue Optics, OSA 1999 Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper AMB1–1.
  14. T. J. Farrell, M. S. Patterson, M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Appl. Opt. 37, 1958–1972 (1998). [CrossRef]
  15. M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998). [CrossRef]
  16. S. Takatani, M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. BME-26, 656–664 (1979). [CrossRef]
  17. J. M. Schmitt, G. X. Zhou, E. C. Walker, R. T. Wall, “Multilayer model of photon diffusion in the skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990). [CrossRef] [PubMed]
  18. H. Taitelbaum, S. Havlin, G. Weiss, “Approximate theory of photon migration in a two-layer medium,” Appl. Opt. 28, 2245–2249 (1989). [CrossRef] [PubMed]
  19. I. Dyan, S. Havlin, G. H. Weiss, “Photon migration in a two-layer turbid medium. A diffusion analysis,” J. Mod. Opt. 39, 1567–1582 (1992). [CrossRef]
  20. A. Kienle, M. S. Patterson, N. Utke, R. Bays, G. Wagnières, H. van den Bergh, “Determination of the optical properties of two-layer turbid media,” Appl. Opt. 37, 779–791 (1998). [CrossRef]
  21. A. Kienle, T. Glanzmann, G. Wagnières, H. van den Bergh, “Investigation of two-layered turbid media with time-resolved reflectance,” Appl. Opt. 37, 6852–6862 (1998). [CrossRef]
  22. G. Alexandrakis, T. J. Farrell, M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt. 37, 7401–7410 (1998). [CrossRef]
  23. A. Kienle, T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44, 2689–2702 (1999). [CrossRef] [PubMed]
  24. J.-M. Tualle, E. Tinet, J. Prat, B. Gelebart, S. Avrillier, “Light propagation in layered turbid media: a new analytical model for ultrafast calculation of the direct problem,” in Biomedical Optics: New Concepts in Therapeutic Laser Applications, Novel Biomedical Optical Spectroscopy, Imaging, and Diagnostics, Advances in Optical Imaging, Photon Migration, and Tissue Optics, OSA 1999 Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper AMA3–1.
  25. L. O. Svaasand, T. Spott, J. B. Fishkin, T. Pham, B. J. Tromberg, M. W. Berns, “Reflectance measurements of layered media with diffuse photon-density waves: a potential tool for evaluating deep burns and subcutaneous lesions,” Phys. Med. Biol. 44, 801–813 (1999). [CrossRef] [PubMed]
  26. A. Ya Polishchuk, R. R. Alfano, “Photon diffusion in the velocity sphere,” Opt. Lett. 21, 916–918 (1996). [CrossRef] [PubMed]
  27. L. Wang, S. L. Jacques, “Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media,” J. Opt. Soc. Am. A 10, 1746–1752 (1993). [CrossRef]
  28. L. Wang, “Rapid modeling of diffuse reflectance of light in turbid slabs,” J. Opt. Soc. Am. A 15, 936–944 (1998). [CrossRef]
  29. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes—The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, N.Y., 1996).
  30. B. W. Pogue, M. S. Patterson, “Error assessment of a wavelength tunable frequency domain system for noninvasive tissue spectroscopy,” J. Biomed. Opt. 1, 311–323 (1996). [CrossRef] [PubMed]
  31. M. Bassani, F. Martelli, G. Zaccanti, D. Contini, “Independence of the diffusion coefficient from absorption: experimental and numerical evidence,” Opt. Lett. 22, 853–855 (1997). [CrossRef] [PubMed]
  32. T. Durduran, A. G. Yodh, B. Chance, D. A. Boas, “Does the photon-diffusion coefficient depend on absorption?” J. Opt. Soc. Am. A 14, 3358–3365 (1997). [CrossRef]
  33. D. J. Durian, “The diffusion coefficient depends on absorption,” Opt. Lett. 23, 1502–1504 (1998). [CrossRef]
  34. R. Aronson, N. Corngold, “Photon diffusion coefficient in an absorbing medium,” J. Opt. Soc. Am. A 16, 1066–1071 (1999). [CrossRef]
  35. G. Alexandrakis, R. A. Weersink, J. T. Bruulsema, M. S. Patterson, “Estimation of optical properties of two-layer tissue simulating phantoms from spatially resolved frequency-domain reflectance,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 155–163 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited