Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Design of efficient all-optical code-division multiplexing systems supporting multiple-bit-rate and equal-bit-rate transmissions

Not Accessible

Your library or personal account may give you access

Abstract

We present the design of efficient all-optical code-division multiplexing (AOCDM) systems that can transmit multiple-bit-rate (MBR) data signals over a common optical fiber. This is achieved when the proposed strict optical orthogonal code (OOC) of autocorrelation and cross-correlation constraints of 1 are used but without performance degradation compared with the use of conventional OOC. We describe the design of various strict OOC’s by employing the useful concept of slot distances, and methods of code construction are also presented. Moreover, we give the principle of MBR data transmissions in an AOCDM system. It is shown that AOCDM systems using the proposed OOC can effectively transmit multiuser MBR and equal-bit-rate (EBR) data with no increase of system complexity. In principle, optimal strict OOC’s need the same or a slightly larger system bandwidth compared with optimal conventional OOC’s for EBR operation, whereas the former can require a smaller system bandwidth and have a better system performance than the latter for MBR transmissions. A new, to our knowledge, family of strict OOC’s is also introduced, whose code words can have nonconstant weights to support multiuser communications with different transmission quality. Furthermore, we design low-cost AOCDM transmitters that are based on an efficient gain-switching scheme that does not require an electro-optic intensity modulator to on–off modulate an optical clock pulse stream at each transmitter. The basic operation principle is also experimentally demonstrated.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
All-optical code-division-multiplexing technique supporting multirate data communications and local-area-network interconnections

Jian-Guo Zhang, Awnashilal B. Sharma, and Wing C. Kwong
Appl. Opt. 41(5) 832-844 (2002)

Spatial-phase code-division multiple-access system with multiplexed Fourier holography switching for reconfigurable optical interconnection

Kazuya Takasago, Makoto Takekawa, Atsushi Shirakawa, and Fumihiko Kannari
Appl. Opt. 39(14) 2278-2286 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved