OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 14 — May. 10, 2000
  • pp: 2313–2320

Optoelectronic information encryption with phase-shifting interferometry

Enrique Tajahuerce, Osamu Matoba, Steven C. Verrall, and Bahram Javidi  »View Author Affiliations

Applied Optics, Vol. 39, Issue 14, pp. 2313-2320 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (1855 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A technique that combines the high speed and the high security of optical encryption with the advantages of electronic transmission, storage, and decryption is introduced. Digital phase-shifting interferometry is used for efficient recording of phase and amplitude information with an intensity recording device. The encryption is performed by use of two random phase codes, one in the object plane and another in the Fresnel domain, providing high security in the encrypted image and a key with many degrees of freedom. We describe how our technique can be adapted to encrypt either the Fraunhofer or the Fresnel diffraction pattern of the input. Electronic decryption can be performed with a one-step fast Fourier transform reconstruction procedure. Experimental results for both systems including a lensless setup are shown.

© 2000 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(100.0100) Image processing : Image processing
(120.3180) Instrumentation, measurement, and metrology : Interferometry

Original Manuscript: November 2, 1999
Revised Manuscript: February 2, 2000
Published: May 10, 2000

Enrique Tajahuerce, Osamu Matoba, Steven C. Verrall, and Bahram Javidi, "Optoelectronic information encryption with phase-shifting interferometry," Appl. Opt. 39, 2313-2320 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994). [CrossRef]
  2. Ph. Réfrégier, B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995). [CrossRef] [PubMed]
  3. F. Goudail, F. Bollaro, B. Javidi, Ph. Réfrégier, “Influence of a perturbation in a double phase-encoding system,” J. Opt. Soc. Am. A 15, 2629–2638 (1998). [CrossRef]
  4. H.-Y. Li, Y. Qiao, D. Psaltis, “Optical network for real-time face recognition,” Appl. Opt. 32, 5026–5035 (1993). [CrossRef] [PubMed]
  5. C. L. Wilson, C. I. Watson, E. G. Paek, “Combined optical and neural network fingerprint matching,” in Optical Pattern Recognition VIII, D. P. Casasent, T. Chao, eds., Proc. SPIE3073, 373–382 (1997). [CrossRef]
  6. Ph. Lalanne, H. Richard, J. C. Rodier, P. Chavel, J. Taboury, K. Madani, P. Garda, F. Devos, “2D generation of random numbers by multimode fiber speckle for silicon arrays of processing elements,” Opt. Commun. 76, 387–394 (1990). [CrossRef]
  7. N. Yoshikawa, M. Itoh, T. Yatagai, “Binary computer-generated holograms for security applications from a synthetic double-exposure method by electron-beam lithography,” Opt. Lett. 23, 1483–1485 (1990). [CrossRef]
  8. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995). [CrossRef] [PubMed]
  9. O. Matoba, B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999). [CrossRef]
  10. J. L. Horner, B. Javidi, eds., Optical Engineering Special Issue on Optical Security (SPIE, Bellingham, Wash., 1999), Vol. 38.
  11. C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991). [CrossRef]
  12. J. E. Ford, Y. Fainman, S. H. Lee, “Array interconnection by phase-coded optical correlation,” Opt. Lett. 15, 1088–1090 (1990). [CrossRef] [PubMed]
  13. H. Lee, S. K. Jin, “Experimental study of volume holographic interconnects using random patterns,” Appl. Phys. Lett. 62, 2191–2193 (1993). [CrossRef]
  14. T. F. Krile, M. O. Hagler, W. D. Redus, J. F. Walkup, “Multiplex holography with chirp-modulated binary phase-coded reference-beam masks,” Appl. Opt. 18, 52–56 (1979). [CrossRef] [PubMed]
  15. Y. H. Kang, K. H. Kim, B. Lee, “Volume hologram scheme using optical fiber for spatial multiplexing,” Opt. Lett. 22, 739–741 (1997). [CrossRef] [PubMed]
  16. H. J. Caulfield, ed., Handbook of Optical Holography (Academic, London, 1979).
  17. L. Onural, P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987). [CrossRef]
  18. U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 2011–2015 (1994). [CrossRef]
  19. G. Pedrini, Y. L. Zou, H. J. Tiziani, “Digital double-pulsed holographic interferometry for vibration analysis,” J. Mod. Opt. 40, 367–374 (1995). [CrossRef]
  20. U. Schnars, W. P. O. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). [CrossRef] [PubMed]
  21. Y. Takaki, H. Kawai, H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990–4996 (1999). [CrossRef]
  22. J. C. Marron, K. S. Schroeder, “Three-dimensional lensless imaging using laser frequency diversity,” Appl. Opt. 31, 255–262 (1992). [CrossRef] [PubMed]
  23. U. Schnars, T. M. Kreis, W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms: reduction of the spatial frequency spectrum,” Opt. Eng. 35, 977–982 (1996). [CrossRef]
  24. E. Cuche, F. Bevilacqua, C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999). [CrossRef]
  25. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974). [CrossRef] [PubMed]
  26. K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1988), Vol. XXVI, pp. 349–393. [CrossRef]
  27. J. Schwider, “Advanced evaluation techniques in interferometry,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1990), Vol. XXVIII, pp. 271–359. [CrossRef]
  28. I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef] [PubMed]
  29. T. Zhang, I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998). [CrossRef]
  30. J. W. Cooley, J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19, 297–301 (1965). [CrossRef]
  31. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited