OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 14 — May. 10, 2000
  • pp: 2321–2325

High focal depth with a quasi-bifocus birefringent lens

Sucharita Sanyal and Ajay Ghosh  »View Author Affiliations

Applied Optics, Vol. 39, Issue 14, pp. 2321-2325 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (151 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Strehl definition along the axis of a birefringent lens sandwiched between two polarizers is studied analytically. The optic axis of the birefringent lens made of a uniaxial crystal is perpendicular to the lens axis, and the system behaves like a bifocus lens for proper orientation of the polarizers. The Sparrow criterion is employed for designing an imaging system with high depth of focus. It is shown that, when the two foci are separated by the Sparrow limit of resolution, the focal depth is maximum and the intensity point-spread function remains almost identical within this limit. The resolution according to the Rayleigh criterion in this zone is more than that of an ideal lens.

© 2000 Optical Society of America

OCIS Codes
(220.1230) Optical design and fabrication : Apodization
(220.3630) Optical design and fabrication : Lenses
(230.5440) Optical devices : Polarization-selective devices
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization
(350.4600) Other areas of optics : Optical engineering

Original Manuscript: August 23, 1999
Revised Manuscript: February 4, 2000
Published: May 10, 2000

Sucharita Sanyal and Ajay Ghosh, "High focal depth with a quasi-bifocus birefringent lens," Appl. Opt. 39, 2321-2325 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. T. Welford, “Use of annular apertures to increase focal depth,” J. Opt. Soc. Am. 50, 749–753 (1960). [CrossRef]
  2. J. T. McCrickerd, “Coherent processing and depth of focus of annular aperture imagery,” Appl. Opt. 10, 2226–2231 (1971). [CrossRef] [PubMed]
  3. G. Hausler, “A method to increase the depth of focus by two step image processing,” Opt. Commun. 6, 38–42 (1972). [CrossRef]
  4. R. J. Pieper, A. Korpel, “Image processing for extended depth of field,” Appl. Opt. 22, 1449–1453 (1983). [CrossRef] [PubMed]
  5. J. Ojeda-Castañeda, L. R. Berriel-Valdos, E. L. Montes, “Line-spread function relatively insensitive to defocus,” Opt. Lett. 8, 458–460 (1983). [CrossRef] [PubMed]
  6. G. Indebetouw, H. X. Bai, “Imaging with Fresnel zone pupil masks: extended depth of field,” Appl. Opt. 23, 4299–4302 (1984). [CrossRef] [PubMed]
  7. J. Ojeda-Castañeda, L. R. Berriel-Valdos, E. L. Montes, “Spatial filter for increasing the depth of focus,” Opt. Lett. 10, 520–522 (1985). [CrossRef] [PubMed]
  8. J. Ojeda-Castañeda, P. Andres, A. Díaz, “Annular apodizers for low sensitivity to defocus and to spherical aberration,” Opt. Lett. 11, 487–489 (1986). [CrossRef] [PubMed]
  9. J. Ojeda-Castañeda, L. R. Berriel-Valdos, “Arbitrarily high focal depth with finite apertures,” Opt. Lett. 13, 183–185 (1988). [CrossRef] [PubMed]
  10. J. Ojeda-Castañeda, A. Díaz, “High focal depth by quasibifocus,” Appl. Opt. 27, 4163–4165 (1988). [CrossRef]
  11. A. Ghosh, K. Murata, A. K. Chakraborty, “Frequency response characteristics of a perfect lens masked by polarizing devices,” J. Opt. Soc. Am. A 5, 277–284 (1988). [CrossRef]
  12. K. Bhattacharya, A. K. Chakraborty, A. Ghosh, “Simulation of effects of phase and amplitude coatings on the lens aperture with polarization masks,” J. Opt. Soc. Am. A 2, 586–592 (1994). [CrossRef]
  13. A. K. Chakraborty, S. Das, D. K. Basu, A. Ghosh, “Imaging characteristics of a birefringent lens,” in Polarization Considerations for Optical Systems II, R. A. Chipman, ed., Proc. SPIE1166, 130–134 (1990). [CrossRef]
  14. S. Sanyal, P. Bandyopadhyay, A. Ghosh, “Vector wave imagery using a birefringent lens,” Opt. Eng. 37, 592–599 (1998). [CrossRef]
  15. S. Sanyal, A. Ghosh, “Imaging characteristics of birefringent lenses under focused and defocused condition,” Optik 110, 513–520 (1999).
  16. J. Tsujiuchi, “Correction of optical images by compensation of aberrations and by spatial frequency filtering,” in Progress in Optics II, E. Wolf, ed. (North-Holland, Amsterdam, 1963), pp. 131–180. [CrossRef]
  17. Lord Rayleigh, Experimental Notebook 1870–1878 (U.S. Air Force Geophysics Laboratory Research Library, Hanscom Air Force Base, Bedford, Mass., 01731).
  18. J. L. Soret, “Ueber die durch Kreisgitter Diffractionsphanomene,” Ann. Phys. Chem. 156, 99–113 (1875). [CrossRef]
  19. K. Miyamoto, “The phase Fresnel lens,” J. Opt. Soc. Am. 51, 17–20 (1961). [CrossRef]
  20. M. W. Farn, “Binary gratings with increased efficiency,” Appl. Opt. 31, 4453–4458 (1992). [CrossRef] [PubMed]
  21. M. Schmitz, O. Bryngdahl, “A new type of lens with binary subwavelength structures,” Opt. Photon. News 8(12), 18 (1997). [CrossRef]
  22. L. N. Hazra, “Diffractive optical elements: past, present, and future,” in Selected Papers from International Conference on Optics and Optoelectronics ’98, K. Singh, O. P. Nijhawan, A. K. Gupta, A. K. Musla, eds., Proc. SPIE3729, 198–212 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited