OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 14 — May. 10, 2000
  • pp: 2347–2352

Measurement of the thermal conductivity of erasable phase-change optical recording media

Chubing Peng and M. Mansuripur  »View Author Affiliations


Applied Optics, Vol. 39, Issue 14, pp. 2347-2352 (2000)
http://dx.doi.org/10.1364/AO.39.002347


View Full Text Article

Enhanced HTML    Acrobat PDF (113 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a method to estimate the thermal conductivity of the substrate, the dielectric layer, the phase-change (PC) layer, and the reflective layer of PC optical recording media. The method relies on the amorphous-to-crystalline phase transition that occurs in the PC layer and takes advantage of the difference in the thermal diffusion behavior under different-sized focused spots. All the results obtained here are reliable with better than ±5% accuracy, which is within the margin of our experimental error.

© 2000 Optical Society of America

OCIS Codes
(210.0210) Optical data storage : Optical data storage
(210.4590) Optical data storage : Optical disks
(210.4770) Optical data storage : Optical recording
(210.4810) Optical data storage : Optical storage-recording materials

History
Original Manuscript: June 7, 1999
Revised Manuscript: October 11, 1999
Published: May 10, 2000

Citation
Chubing Peng and M. Mansuripur, "Measurement of the thermal conductivity of erasable phase-change optical recording media," Appl. Opt. 39, 2347-2352 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-14-2347


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971). [CrossRef]
  2. N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takeo, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys. 26, Suppl. 26-4, 61–66 (1987).
  3. T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 123–128 (1989).
  4. R. W. Powell, in Thermal Conductivity: Part 2, R. T. Tye, ed. (Academic, London, 1969), pp. 275–338.
  5. C. H. Henager, W. T. Dawlewicz, “Thermal conductivities of thin, sputtered optical films,” Appl. Opt. 32, 91–101 (1993). [CrossRef] [PubMed]
  6. D. G. Cahill, H. E. Fishcher, T. Klitsner, E. T. Swartz, R. D. Pohl, “Thermal conductivity of thin film: measurements and understanding,” J. Vac. Sci. Technol. A 7, 1259–1266 (1989). [CrossRef]
  7. N. Tsutsumi, T. Kiyotsukuri, “Measurement of thermal diffusivity for polymer film by flash radiometry,” Appl. Phys. Lett. 52, 442–444 (1988). [CrossRef]
  8. Y. Agari, A. Veda, S. Nagai, “Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method,” J. Polym. Sci. Part B Polym. 33, 33–42 (1995). [CrossRef]
  9. E. Welsch, H. G. Walther, K. Friedrich, P. Eckhardt, “Separation of optical thin film and substrate absorption by means of photothermal surface deformation technique,” J. Appl. Phys. 67, 6575–6578 (1990). [CrossRef]
  10. Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Sympozium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996). [CrossRef]
  11. R. Forster, E. Gmelin, “Thermal conductivity and diffusivity measurements in the sub-µm and sub-µs scale on centimeter area samples using a microthermocouple,” Rev. Sci. Instrum. 67, 4246–4255 (1996). [CrossRef]
  12. S. Govorkov, W. Ruderman, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997). [CrossRef]
  13. C. A. Paddock, G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986). [CrossRef]
  14. Y. C. Hsieh, M. Mansuripur, J. Volkmer, A. Brewen, “Measurement of the thermal coefficients of nonreversible phase-change optical recording films,” Appl. Opt. 36, 866–872 (1997). [CrossRef] [PubMed]
  15. W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999). [CrossRef]
  16. P. Nath, K. L. Chopra, “Experimental determination of the thermal conductivity of thin films,” Thin Solid Films 18, 29–37 (1973). [CrossRef]
  17. K. A. Rubin, D. P. Birnie, M. Chen, “Effect of multilayer structure and laser pulse width on the reversible cycling of phase-change optical storage media,” J. Appl. Phys. 71, 3680–3687 (1992). [CrossRef]
  18. C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82, 4183–4191 (1997). [CrossRef]
  19. T. Ohta, M. Uchida, K. Yoshioka, K. Inoue, T. Akiyama, S. Furukawa, K. Kotera, S. Nakamura, “Million cycle overwritable phase-change optical disk media,” in Optical Data Storage Topical Meeting, G. R. Knight, C. N. Kurtz, eds., Proc. SPIE1078, 27–34 (1989). [CrossRef]
  20. M. Mansuripur, G. A. N. Connell, J. W. Goodman, “Laser-induced local heating of multilayers,” Appl. Opt. 21, 1106–1114 (1982). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited