OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 14 — May. 10, 2000
  • pp: 2353–2358

Effect of film thickness on the performance of photopolymers as holographic recording materials

Joel E. Boyd, Timothy J. Trentler, Rajeev K. Wahi, Yadira I. Vega-Cantu, and Vicki L. Colvin  »View Author Affiliations

Applied Optics, Vol. 39, Issue 14, pp. 2353-2358 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (93 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An important issue in developing applications for photopolymers in holography is the effect of film thickness on recording properties. Now it is possible to create these samples with a much wider range of thickness (d = 20–1400 µm) than was previously available. We exploit these recent advances in photopolymer processing to systematically evaluate how the dynamic range of a photopolymer depends on its thickness. The results illustrate that sample performance increases linearly with thickness as predicted by standard models of volume holography. However, above a critical thickness sample performance degrades, and the angular response of recorded plane-wave holograms shows evidence of grating curvature. These distortions are likely the result of photopolymer shrinkage, which in thicker samples occurs in a nonuniform fashion. This problem limits the performance of these photopolymers and is likely to be an issue for any photopolymer that undergoes comparable polymerization shrinkage.

© 2000 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(160.5470) Materials : Polymers
(210.0210) Optical data storage : Optical data storage

Original Manuscript: September 7, 1999
Revised Manuscript: January 21, 2000
Published: May 10, 2000

Joel E. Boyd, Timothy J. Trentler, Rajeev K. Wahi, Yadira I. Vega-Cantu, and Vicki L. Colvin, "Effect of film thickness on the performance of photopolymers as holographic recording materials," Appl. Opt. 39, 2353-2358 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Chao, S. Chi, “Diffraction properties of windshield laminated photopolymer holograms,” J. Opt. 29, 95–103 (1998). [CrossRef]
  2. A. Pu, D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996). [CrossRef] [PubMed]
  3. U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993). [CrossRef]
  4. W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
  5. I. Semenova, N. Reinhand, “Holographic spectral selectors,” in Holographic Materials IV, T. J. Trout, ed., Proc. SPIE3294, 207–214 (1998). [CrossRef]
  6. C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photpolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997). [CrossRef]
  7. J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J.-M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997). [CrossRef]
  8. T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998). [CrossRef]
  9. H.-Y. S. Li, D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764–3774 (1994). [CrossRef] [PubMed]
  10. J. T. Gallo, C. M. Verber, “Model for the effects of material shrinkage on volume holograms,” Appl. Opt. 33, 6797–6804 (1994). [CrossRef] [PubMed]
  11. L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, C. Boyd, “Temperature-induced changes in photoplymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998). [CrossRef]
  12. M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–254 (1999). [CrossRef]
  13. L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, A. Harris, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23, 1710–1712 (1998). [CrossRef]
  14. V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997). [CrossRef]
  15. C. R. Kagan, T. D. Harris, A. L. Harris, M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998). [CrossRef]
  16. D. A. Waldman, H.-Y. S. Li, E. A. Cetin, “Holographic recording properties in thick films of ULSH-500 photopolymer,” in Diffractive and Holographic Device Technologies and Applications V, I. Cindrich, S. H. Lee, eds., Proc. SPIE3291, 89–103 (1998). [CrossRef]
  17. D. A. Waldman, H.-Y. S. Li, “Determination of low transverse shrinkage in slant fringe gratings of a cationic ring-opening volume hologram recording material,” in Diffractive and Holographic Device Technologies and Applications IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE3010, 354–372 (1997). [CrossRef]
  18. D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).
  19. D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996). [CrossRef]
  20. G. J. Steckman, I. Solomatine, G. Zhou, D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23, 1310–1312 (1998). [CrossRef]
  21. L. Dhar, A. Hale, H. E. Katz, M. A. Schilling, M. G. Schnoes, F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487–489 (1999). [CrossRef]
  22. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  23. R. R. A. Syms, Practical Volume Holography (Oxford University Press, New York, 1990).
  24. D. Liu, W. Tang, W. Huang, Z. Liang, “Relationship between the diffraction efficiency of a reflection hologram and the thickness and absorption of the recording medium,” Opt. Eng. 31, 809–812 (1992). [CrossRef]
  25. R. A. Lessard, F. Ghailane, G. Manivannan, “Holographic characterizaion of photochromics-doped-polymers films for holographic memories,” T. Trout, ed., Proc. SPIE2688, 45–51 (1996).
  26. S. S. Xue, G. Manivannan, R. A. Lessard, “Holographic and spectroscopic characterization of spiropyran doped poly(methyl methacrylate) films,” Thin Solid Films 253, 228–232 (1994). [CrossRef]
  27. F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996). [CrossRef] [PubMed]
  28. X. Zhao, X. Mourolis, “Mechanism of grating formation in DuPont photopolymers,” J. Mod. Opt. 41, 1929–1934 (1996). [CrossRef]
  29. A. Pu, K. Curtis, D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824–2829 (1996). [CrossRef]
  30. D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988). [CrossRef]
  31. K. Curtis, D. Psaltis, “Recording of multiple holograms in photopolymer films,” Appl. Opt. 31, 7425–7428 (1992). [CrossRef] [PubMed]
  32. J. J. A. Couture, R. A. Lessard, “Diffraction efficiency changes induced by coupling effects between gratings of transmission holograms,” Optik 68, 69–80 (1984).
  33. J. J. A. Couture, R. A. Lessard, “Effective thickness determination for volume transmissioni multiplex holograms,” Can. J. Phys. 64, 553–557 (1986). [CrossRef]
  34. U.-S. Rhee, H. J. Caulfield, C. S. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995). [CrossRef] [PubMed]
  35. D. Kermisch, “Nonuniform sinusoidally modulated dielectric gratings,” J. Opt. Soc. Am. 59, 1409–1414 (1969). [CrossRef]
  36. L. B. Au, J. C. W. Newell, L. Solymar, “Nonuniformities in thick dichromated gelatin transmission gratings,” J. Mod. Opt. 34, 1211–1225 (1987). [CrossRef]
  37. T. Kubota, “The bending of interference fringes inside a hologram,” Opt. Acta 26, 731–743 (1979). [CrossRef]
  38. V. Weiss, A. A. Friesem, E. Millul, “Control of grating anomolies in photoactive polymers,” in Photopolymer Device Physics, Chemistry, and Applications III, R. A. Lessard, ed., Proc. SPIE2851, 110–117 (1996).
  39. V. Weiss, A. A. Friesem, V. A. Krongauz, “Organic materials for real-time holographic recording,” J. Imaging Sci. Technol. 41, 371–382 (1997).
  40. D. Liu, G. Manivannan, H. H. Arsenault, R. A. Lessard, “Asymmetry in the diffraction spectrum of a reflection hologram grating,” J. Mod. Opt. 42, 639–653 (1995). [CrossRef]
  41. E. Suhir, “Analytical modeling of the interfacial shearing stress in dual-coated optical fiber specimens subjected to tension,” Appl. Opt. 32, 3024–3034 (1993). [CrossRef] [PubMed]
  42. E. Suhir, “Effect of the nonlinear stress-strain relationship on the maximum stress in silica fibers subjected to two-point bending,” Appl. Opt. 32, 1567–1572 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited