OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 15 — May. 20, 2000
  • pp: 2377–2386

Differential optical absorption spectroscopy instrument for stratospheric balloonborne trace-gas studies

Frieder Ferlemann, Nadine Bauer, Richard Fitzenberger, Hartwig Harder, Hartmut Osterkamp, Dieter Perner, Ulrich Platt, Matthias Schneider, Paul Vradelis, and Klaus Pfeilsticker  »View Author Affiliations


Applied Optics, Vol. 39, Issue 15, pp. 2377-2386 (2000)
http://dx.doi.org/10.1364/AO.39.002377


View Full Text Article

Enhanced HTML    Acrobat PDF (200 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A newly developed UV–visible instrument for differential optical absorption spectroscopic measurements of atmospheric trace gases from balloon platforms is described. Direct solar light at daytime in the near-ultraviolet (320.6–422.6-nm) and the visible (417.6–670.7-nm) spectral ranges can be simultaneously analyzed for the atmospheric column abundances or profiles of O3, NO2, NO3, BrO, OClO, O4, H2O, and possibly other species (HNO2, IO, CH2O). Compared with previously used balloonborne UV–visible spectrometers, the instrument has the superior properties of low mass (42 kg), low power consumption (30 W), decreased spectral drift that is caused by temperature and pressure changes, low detector dark current, and low spectrometer stray light. The three last-named characteristics are achieved by enclosure of the entire spectrometer in a pressurized and thermostated container and by inclusion of separately thermostated photodiode array detectors. The optical setup is simplified to reduce its weight. The spectral stray light is reduced by suppression of the higher-order and zero-order grating reflections by use of light traps and in the UV by addition of a dispersive prism preanalyzer. The major instrumental design characteristics and the instrumental performance as tested in the laboratory and during several stratospheric balloon flights are reported.

© 2000 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics

History
Original Manuscript: July 20, 1999
Published: May 20, 2000

Citation
Frieder Ferlemann, Nadine Bauer, Richard Fitzenberger, Hartwig Harder, Hartmut Osterkamp, Dieter Perner, Ulrich Platt, Matthias Schneider, Paul Vradelis, and Klaus Pfeilsticker, "Differential optical absorption spectroscopy instrument for stratospheric balloonborne trace-gas studies," Appl. Opt. 39, 2377-2386 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-15-2377

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited