OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 15 — May. 20, 2000
  • pp: 2377–2386

Differential optical absorption spectroscopy instrument for stratospheric balloonborne trace-gas studies

Frieder Ferlemann, Nadine Bauer, Richard Fitzenberger, Hartwig Harder, Hartmut Osterkamp, Dieter Perner, Ulrich Platt, Matthias Schneider, Paul Vradelis, and Klaus Pfeilsticker  »View Author Affiliations


Applied Optics, Vol. 39, Issue 15, pp. 2377-2386 (2000)
http://dx.doi.org/10.1364/AO.39.002377


View Full Text Article

Enhanced HTML    Acrobat PDF (200 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A newly developed UV–visible instrument for differential optical absorption spectroscopic measurements of atmospheric trace gases from balloon platforms is described. Direct solar light at daytime in the near-ultraviolet (320.6–422.6-nm) and the visible (417.6–670.7-nm) spectral ranges can be simultaneously analyzed for the atmospheric column abundances or profiles of O3, NO2, NO3, BrO, OClO, O4, H2O, and possibly other species (HNO2, IO, CH2O). Compared with previously used balloonborne UV–visible spectrometers, the instrument has the superior properties of low mass (42 kg), low power consumption (30 W), decreased spectral drift that is caused by temperature and pressure changes, low detector dark current, and low spectrometer stray light. The three last-named characteristics are achieved by enclosure of the entire spectrometer in a pressurized and thermostated container and by inclusion of separately thermostated photodiode array detectors. The optical setup is simplified to reduce its weight. The spectral stray light is reduced by suppression of the higher-order and zero-order grating reflections by use of light traps and in the UV by addition of a dispersive prism preanalyzer. The major instrumental design characteristics and the instrumental performance as tested in the laboratory and during several stratospheric balloon flights are reported.

© 2000 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics

History
Original Manuscript: July 20, 1999
Published: May 20, 2000

Citation
Frieder Ferlemann, Nadine Bauer, Richard Fitzenberger, Hartwig Harder, Hartmut Osterkamp, Dieter Perner, Ulrich Platt, Matthias Schneider, Paul Vradelis, and Klaus Pfeilsticker, "Differential optical absorption spectroscopy instrument for stratospheric balloonborne trace-gas studies," Appl. Opt. 39, 2377-2386 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-15-2377


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Bates, M. Nicolet, “The photochemistry of water vapour,” J. Geophys. Res. 55, 301–327 (1950). [CrossRef]
  2. P. J. Crutzen, “The influence of nitrogen oxides on the atmospheric ozone content,” Q. J. R. Meteorol. Soc. 96, 320–325 (1970). [CrossRef]
  3. H. Johnston, “Reduction of stratospheric ozone catalysts from supersonic transport exhaust,” Science 173, 517–522 (1971). [CrossRef] [PubMed]
  4. M. J. Molina, F. S. Rowland, “Stratospheric sink for chlorofluoromethanes: chlorine atom catalyzed destruction of ozone,” Nature (London) 249, 810–814 (1974). [CrossRef]
  5. R. S. Stolarski, R. J. Cicerone, “Stratospheric chlorine: a possible sink for ozone,” Can. J. Chem. 52, 1610–1615 (1973). [CrossRef]
  6. S. C. Wofsy, M. B. McElroy, Y. L. Yung, “The chemistry of atmospheric bromine,” Geophys. Res. Lett. 2, 215–218 (1975). [CrossRef]
  7. J. C. Farman, B. G. Gardiner, J. D. Shanklin, “Large ozone losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction,” Nature (London) 315, 207–210 (1985). [CrossRef]
  8. World Meteorological Organisation, Scientific Assessment of Ozone Depletion (World Meteorological Organisation, Geneva, Switzerland, 1991).
  9. D. Lary, M. P. Chipperfield, “Heterogeneous atmospheric bromine chemistry,” J. Geophys. Res. 101, 1489–1504 (1996). [CrossRef]
  10. D. Lary, R. Toumi, A. M. Lee, N. Newchurch, M. Pirre, J. B. Renard, “Carbon arosols and atmospheric photochemistry,” J. Geophys. Res. 102, 3671–3682 (1997). [CrossRef]
  11. J. B. Renard, M. Pirre, C. Robert, D. Moreau, D. Huguenin, J. M. Russel, “Nocturnal vertical distribution of stratospheric O3, NO2, and NO3 from balloon measurements,” J. Geophys. Res. 101, 28,793–28,704 (1996). [CrossRef]
  12. S. Solomon, R. R. Garcia, A. R. Ravishankara, “On the role of iodine in ozone depletion,” J. Geophys. Res. 99, 20,491–20,499 (1994). [CrossRef]
  13. R. J. Salawitch, S. C. Wofsy, P. O. Wennberg, R. C. Cohen, J. G. Anderson, D. W. Fahey, R. S. Gao, E. R. Keim, E. L. Woodbridge, R. M. Stimpfle, J. P. Koplow, D. W. Kohn, C. R. Webster, R. D. May, L. Pfister, E. W. Gottlieb, H. A. Michelsen, G. K. Yue, M. J. Prather, J. C. Wilson, C. A. Brock, H. H. Jonsson, J. E. Dye, D. Baumgardner, M. H. Proffitt, M. Loewenstein, J. R. Podolske, J. W. Elkins, G. S. Dutton, E. J. Hintsa, A. E. Dessler, E. M. Weinstock, K. K. Kelly, K. A. Boering, B. C. Daube, K. R. Chan, S. W. Bowen, “The diurnal variation of hydrogen, nitrogen, and chlorine radicals: implications for the heterogeneous production of HNO2,” Geophys. Res. Lett. 21, 2551–2554 (1994). [CrossRef]
  14. J. P. Pommereau, J. Piquard, “Observation of the vertical distribution of stratospheric OClO,” Geophys. Res. Lett. 21, 1231–1234 (1994). [CrossRef]
  15. C. W. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609–623 (1976). [CrossRef]
  16. U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Analysis Series (Wiley, New York, 1994), pp. 27–84.
  17. U. Platt, L. Marquard, T. Wagner, D. Perner, “Corrections for zenith scattered light DOAS,” Geophys. Res. Lett. 23, 1759–1762 (1997). [CrossRef]
  18. C. Camy-Peyret, J.-M. Flaud, A. Perrin, C. P. Rinsland, A. Goldman, F. Murcray, “Stratospheric N2O5, CH4 and N2O profiles from IR solar occultation spectra,” J. Atmos. Chem. 16, 31–40 (1993). [CrossRef]
  19. C. Camy-Peyret, “Balloon-borne Fourier transform spectroscopy for measurements of atmospheric trace gases,” Spectrochim. Acta Part A 51, 1143–1152 (1995). [CrossRef]
  20. World Meteorological Organisation, Atmospheric Ozone, (World Meteorological Organisation, Geneva, Switzerland, 1985), Vols. 1–3.
  21. R. W. Simpson, “Noise in large-aperture self scanned diode array,” Rev. Sci. Instrum. 50, 730–732 (1979). [CrossRef]
  22. H. K. Roscoe, D. J. Fish, R. L. Jones, “Interpolation errors in UV–visible spectroscopy for stratospheric sensing: implications for sensitivity, spectral resolution, and spectral range,” Appl. Opt. 35, 427–432 (1996). [CrossRef] [PubMed]
  23. R. L. Kurucz, I. Furenhild, J. Brault, L. Testermann, Solar Flux Atlas from 296 to 1300 nm, Atlas no. 1 (National Solar Observatory, Sunspot, N. Mex., June1984); available at the following www URL: ftp://ftp.noao.edu/fts/fluxatl .
  24. J. Stutz, U. Platt, “Numerical analysis and estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods,” Appl. Opt. 35, 6041–6053 (1996). [CrossRef] [PubMed]
  25. S. Voigt, J. Orphal, J. P. Burrows, “High-resolution spectra of atmospheric molecules by UV–visible Fourier-transform spectroscopy. 1. Absorption cross-sections of NO2 in the 250–800 nm range at atmospheric temperatures (223–293 K) and pressures (100–1000 mbars),” submitted to Chem. Phys. Lett.
  26. K. Kreher, P. V. Johnston, S. W. Wood, B. Nardi, U. Platt, “Ground-based measurements of tropospheric and stratospheric BrO at Arrival Heights, Antarctica,” Geophys. Res. Lett. 24, 3021–3024 (1997). [CrossRef]
  27. S. W. Sanders, “Improved analysis of atmospheric absorption spectra by including temperature dependence of NO2,” J. Geophys. Res. 101, 20,945–20,952 (1996). [CrossRef]
  28. G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorption measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 95, 18,577–18,582 (1990). [CrossRef]
  29. L. Rothman, “HITRAN spectroscopic data,” J. Quant. Spectrosc. Radiat. Transfer 48, 497–507 (1992).
  30. D. Fish, R. L. Jones, “Rotational Raman scattering and the ring effect in zenith-sky spectra,” Geophys. Res. Lett. 22, 811–814 (1995). [CrossRef]
  31. F. Ferlemann, “Ballongestützte Messung stratosphärischer Spurenstoffe mit differentieller optischer Absorptionspektroskopie,” Ph.D. dissertation (Universität Heidelberg, Heidelberg, Germany, 1998).
  32. F. Ferlemann, C. Camy-Peyret, R. Fitzenberger, H. Harder, T. Hawat, H. Osterkamp, D. Perner, U. Platt, M. Schneider, P. Vradelis, K. Pfeilsticker, “Stratospheric BrO profiles measured at different latitudes and seasons: instrument description, spectral and profile retrieval,” Geophys. Res. Lett. 25, 3847–3850 (1998). [CrossRef]
  33. H. Harder, C. Camy-Peyret, F. Ferlemann, R. Fitzenberger, H. Harder, T. Hawat, H. Osterkamp, D. Perner, U. Platt, M. Schneider, P. Vradelis, K. Pfeilsticker, “Stratospheric BrO profiles measured at different latitudes and seasons: atmospheric observations,” Geophys. Res. Lett. 25, 3843–3846 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited