OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 15 — May. 20, 2000
  • pp: 2393–2400

Lidar measurements taken with a large-aperture liquid mirror. 2. Sodium resonance-fluorescence system

P. S. Argall, O. N. Vassiliev, R. J. Sica, and M. M. Mwangi  »View Author Affiliations


Applied Optics, Vol. 39, Issue 15, pp. 2393-2400 (2000)
http://dx.doi.org/10.1364/AO.39.002393


View Full Text Article

Enhanced HTML    Acrobat PDF (2270 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Sodium resonance-fluorescence lidar is an established technique for measuring atmospheric composition and dynamics in the mesopause region. A large-power–aperture product (6.6-W m2) sodium resonance-fluorescence lidar has been built as a part of the Purple Crow Lidar (PCL) at The University of Western Ontario. This sodium resonance-fluorescence lidar measures, with high optical efficiency, both sodium density and temperature profiles in the 83–100-km region. The sodium lidar operates simultaneously with a powerful Rayleigh- and Raman-scatter lidar (66 W m2). The PCL is thus capable of simultaneous measurement of temperature from the tropopause to the lower thermosphere. The sodium resonance-fluorescence lidar is shown to be able to measure temperature to an absolute precision of 1.5 K and a statistical accuracy of 1 K with a spatial–temporal resolution of 72 (km s) at an altitude of 92 km. We present results from three nights of measurements taken with the sodium lidar and compare these with coincident Rayleigh-scatter lidar measurements. These measurements show significant differences between the temperature profiles derived by the two techniques, which we attribute to variations in the ratio of molecular nitrogen to molecular oxygen that are not accounted for in the standard Rayleigh-scatter temperature analysis.

© 2000 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.3640) Atmospheric and oceanic optics : Lidar

History
Original Manuscript: August 31, 1999
Revised Manuscript: February 4, 2000
Published: May 20, 2000

Citation
P. S. Argall, O. N. Vassiliev, R. J. Sica, and M. M. Mwangi, "Lidar measurements taken with a large-aperture liquid mirror. 2. Sodium resonance-fluorescence system," Appl. Opt. 39, 2393-2400 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-15-2393


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Y. She, R. J. Alvarez, L. M. Caldwell, D. A. Krueger, “High-spectral-resolution Rayleigh–Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541–543 (1992). [CrossRef] [PubMed]
  2. C. S. Gardner, D. C. Senft, T. J. Beatty, R. E. Bills, C. A. Hostetler, “Rayleigh and sodium lidar techniques for measuring middle atmosphere density, temperature, and wind perturbations and their spectra,” in World Ionosphere/Thermosphere Study Handbook, Scientific Committee on Solar Terrestrial Physics, eds. (International Council of Scientific Unions, Urbana, Ill., 1989), Vol. 2, pp. 148–187.
  3. R. J. Sica, S. Sargoytchev, P. S. Argall, E. F. Borra, L. Girard, C. T. Sparrow, S. Flatt, “Lidar measurements taken through the use of a large-aperture liquid mirror. 1. Rayleigh-scatter system,” Appl. Opt. 34, 6925–6936 (1995). [CrossRef] [PubMed]
  4. R. J. Sica, M. D. Thorsley, “Measurements of superadiabatic lapse rates in the middle atmosphere,” Geophys. Res. Lett. 23, 2797–2800 (1996). [CrossRef]
  5. R. J. Sica, A. T. Russell, “Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. I. Vertical wavenumber and temporal spectra,” J. Atmos. Sci. 56, 1308–1329 (1999). [CrossRef]
  6. R. J. Sica, “Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. II. Energy dissipation and eddy diffusion,” J. Atmos. Sci. 56, 1330–1343 (1999). [CrossRef]
  7. M. M. Mwangi, R. J. Sica, P. S. Argall, “Retrieval of molecular nitrogen and molecular oxygen densities in the upper mesosphere and lower thermosphere using ground-based lidar measurements,” J. Geophys. Res. (to be published).
  8. A. Gibson, L. Thomas, S. Bhattachacharyya, “Laser observation of ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere,” Nature (London) 281, 131–132 (1979). [CrossRef]
  9. K. H. Fricke, U. von Zahn, “Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985). [CrossRef]
  10. C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, C. S. Gardner, “Two-frequency lidar technique for mesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990). [CrossRef]
  11. C. Y. She, J. R. Yu, H. Latifi, R. E. Bills, “High-spectral-resolution fluorescence light detection and ranging for mesospheric sodium temperature measurements,” App. Opt. 31, 2095–2106 (1992). [CrossRef]
  12. M. A. White, D. Golias, D. A. Krueger, C. Y. She, “A frequency-agile lidar for simultaneous measurement of temperature and radial wind in the mesopause region without sodium density contamination,” in Application to Lidar to Current Atmospheric Topics, A. Sedlacek, ed., Proc. SPIE2833, 136–142 (1996). [CrossRef]
  13. C. S. Gardner, D. G. Voelz, C. F. Schrist, A. C. Segal, “Lidar studies of the nighttime sodium layer over urbana, Illinois. 1. Seasonal and nocturnal variations.” J. Geophys. Res. 91, 13,659–13,673 (1986). [CrossRef]
  14. R. E. Bills, C. S. Gardner, C. Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991). [CrossRef]
  15. G. C. Papen, W. M. Pfenninger, D. M. Simonich, “Sensitivity analysis of Na narrowband wind-temperature systems,” Appl. Opt. 34, 480–498 (1995). [CrossRef] [PubMed]
  16. R. W. Hamming, Design of Nonrecursive Filters (Prentice-Hall, Englewood Cliffs, N.J., 1977), Chap. 6.
  17. S. Fleming, S. Chandra, M. Schoeberl, J. Barnett, “Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0–120 km,” (National Aeronautics and Space Administration, Washington, D.C., 1988).
  18. J. R. Yu, C. Y. She, “Climatology of a midlatitude mesopause region observed by a lidar at Fort Collins, Colorado (40.6N, 105W),” J. Geophy. Res. 100, 6925–6936 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited