OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 15 — May. 20, 2000
  • pp: 2401–2411

Heterodyne lidar returns in the turbulent atmosphere: performance evaluation of simulated systems

Aniceto Belmonte and Barry J. Rye  »View Author Affiliations


Applied Optics, Vol. 39, Issue 15, pp. 2401-2411 (2000)
http://dx.doi.org/10.1364/AO.39.002401


View Full Text Article

Enhanced HTML    Acrobat PDF (202 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Simulations of beam propagation in three-dimensional random media were used to study the effects of atmospheric refractive turbulence on coherent lidar performance. By use of the two-beam model, the lidar return is expressed in terms of the overlap integral of the transmitter and the virtual (backpropagated) local oscillator beams at the target, reducing the problem to one of computing irradiance along the two propagation paths. This approach provides the tools for analyzing laser radar with general refractive turbulence conditions, beam truncation at the antenna aperture, beam-angle misalignment, and arbitrary transmitter and receiver configurations. Simplifying assumptions used in analytical studies, were tested and treated as benchmarks for determining the accuracy of the simulations. The simulation permitted characterization of the effect on lidar performance of the analytically intractable return variance that results from turbulent fluctuations as well as of the heterodyne optical power and system-antenna efficiency.

© 2000 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.3640) Atmospheric and oceanic optics : Lidar
(030.1670) Coherence and statistical optics : Coherent optical effects

History
Original Manuscript: August 27, 1999
Revised Manuscript: January 19, 2000
Published: May 20, 2000

Citation
Aniceto Belmonte and Barry J. Rye, "Heterodyne lidar returns in the turbulent atmosphere: performance evaluation of simulated systems," Appl. Opt. 39, 2401-2411 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-15-2401


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Belmonte, “Coherent lidar returns in turbulent atmosphere: feasibility study for the simulation of beam propagation,” submitted to Appl. Opt.
  2. A. Belmonte, B. J. Rye, W. A. Brewer, R. M. Hardesty, “Coherent lidar returns in turbulent atmosphere from simulation of beam propagation,” presented at the Tenth Biennial Coherent Laser Radar Technology and Applications Conference, Mount Hood, Ore., 28 June–2 July 1999.
  3. J. M. Martin, S. M. Flatté, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27, 2111–2126 (1988). [CrossRef] [PubMed]
  4. J. M. Martin, S. M. Flatté, “Simulation of point-source scintillation through three-dimensional random media,” J. Opt. Soc. Am. A 7, 838–847 (1990). [CrossRef]
  5. J. Martin, “Simulation of wave propagation in random media: theory and applications,” in Wave Propagation in Random Media (Scintillation), V. I. Tatarskii, A. Ishimaru, V. U. Zavorotny, eds., Vol. PMO9 of SPIE Press Monograph (SPIE Press, Bellingham, Wash., 1993).
  6. W. A. Coles, J. P. Filice, R. G. Frehlich, M. Yadlowsky, “Simulation of wave propagation in three-dimensional random media,” Appl. Opt. 34, 2089–2101 (1995). [CrossRef] [PubMed]
  7. B. J. Rye, “Antenna parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 18, 1390–1398 (1979). [CrossRef] [PubMed]
  8. A. M. Prokhorov, F. V. Bunkin, K. S. Gochelashvily, V. I. Shishov, “Laser irradiance propagation in turbulent media,” Proc. IEEE 63, 790–811 (1975). [CrossRef]
  9. R. L. Fante, “Electromagnetic beam propagation in turbulent media,” Proc. IEEE 63, 1669–1692 (1975). [CrossRef]
  10. G. N. Pearson, “A high-pulse-repetition-frequency CO2 Doppler lidar for atmospheric monitoring,” Rev. Sci. Instrum. 64, 1155–1157 (1993). [CrossRef]
  11. C. J. Grund, “Coherent Doppler lidar for boundary layer wind measurement employing a diode-pumped Tm:Lu:YAG laser,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 14–16.
  12. B. J. Rye, R. G. Frehlich, “Optimal truncation and optical efficiency of an apertured coherent lidar focused on an incoherent backscatter target,” Appl. Opt. 31, 2891–2899 (1992). [CrossRef] [PubMed]
  13. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991). [CrossRef]
  14. V. I. Tatarskii, The Effects of the Turbulence Atmosphere on Wave Propagation (Israel Program for Scientific Translations, Jerusalem, 1971).
  15. J. H. Churnside, “Aperture averaging of optical scintillation in the turbulent atmosphere,” Appl. Opt. 30, 1982–1994 (1991). [CrossRef] [PubMed]
  16. D. L. Fried, “Optical heterodyne detection on an atmospherically distorted signal wave front,” Proc. IEEE 55, 57–66 (1967). [CrossRef]
  17. H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979). [CrossRef]
  18. J. H. Shapiro, B. A. Capron, R. C. Harney, “Imaging and target detection with a heterodyne-reception optical radar,” Appl. Opt. 20, 3292–3312 (1981). [CrossRef] [PubMed]
  19. S. F. Clifford, S. Wandzura, “Monostatic heterodyne lidar performance: the effect of the turbulent atmosphere,” Appl. Opt. 20, 514–516 (1981); errata 20, 1502(1981). [CrossRef] [PubMed]
  20. B. J. Rye, “Refractive-turbulent contribution to incoherent backscatter heterodyne lidar returns,” J. Opt. Soc. Am. 71, 687–691 (1981). [CrossRef]
  21. Yu. N. Barabanenkov, Yu. A. Kravtsov, V. D. Ozrin, A. I. Saichev, “Enhanced backscattering in optics,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1991), Vol. 29, pp. 65–197. [CrossRef]
  22. V. U. Zavorotny, V. I. Klyatskin, V. I. Tatarskii, “Strong fluctuations of the intensity of electromagnetic waves in randomly inhomogeneous media,” Sov. Phys. JETP 46, 252–260 (1977).
  23. V. I. Tatarskii, V. U. Zavorotny, “Strong fluctuations in light propagation in a randomly inhomogeneous medium,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1980), Vol. 18, pp. 205–256.
  24. J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the fourth moment of waves propagating in random media,” Radio Sci. 21, 929–948 (1986). [CrossRef]
  25. R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991). [CrossRef] [PubMed]
  26. R. G. Frehlich, “Effects of refractive turbulence on coherent laser radar,” Appl. Opt. 32, 2122–2139 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited