OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 15 — May. 20, 2000
  • pp: 2412–2414

Myopic deconvolution of adaptive optics images by use of object and point-spread function power spectra: comment

Norman S. Kopeika  »View Author Affiliations

Applied Optics, Vol. 39, Issue 15, pp. 2412-2414 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (57 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is suggested here that the lack of total image correction that is typical in adaptive optics (AO) imaging can be attributed in part to blur derived from small-angle scatter of light by aerosols, known also as the adjacency effect, especially as it is a well-established fact that such atmospheric blur is dominant in satellite imagery and the shape of the modulation transfer function after AO correction is strikingly similar to the unique shape of the aerosol modulation transfer function. Further investigation of AO systems to confirm this would aid in and improve image restoration.

© 2000 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.1350) Atmospheric and oceanic optics : Backscattering

Original Manuscript: June 25, 1999
Published: May 20, 2000

Norman S. Kopeika, "Myopic deconvolution of adaptive optics images by use of object and point-spread function power spectra: comment," Appl. Opt. 39, 2412-2414 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J.-M. Conan, L. M. Mugnier, T. Fusco, V. Michau, G. Rousset, “Myopic deconvolution of adaptive optics images by use of object and point-spread function power spectra,” Appl. Opt. 37, 4614–4622 (1998). [CrossRef]
  2. G. Rousset, J.-C. Fontanella, P. Kern, P. Gigan, F. Rigaut, P. Léna, C. Boyer, P. Jagourel, J.-P. Gaffard, F. Merkle, “First diffraction-limited astronomical images with adaptive optics,” Astron. Astrophys. 230, L29–L32 (1990).
  3. F. Rigaut, G. Rousset, P. Kern, J.-C. Fontanella, J-P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6-m telescope: results and performance,” Astron. Astrophys. 250, 280–290 (1991).
  4. M. C. Roggemann, C. L. Matson, “Power spectrum and Fourier phase spectrum estimation by using fully and partially compensating adaptive optics and bispectrum postprocessing,” J. Opt. Soc. Am. A 9, 1525–1535 (1992). [CrossRef]
  5. J.-M. Conan, P.-Y. Madec, G. Rousset, “Image formation in adaptive optics partial correction,” in Active and Adaptive Optics, F. Merkle, ed., Vol. 48 of ESO Conference and Workshop Proceedings (European Southern Observatory, Garching, Germany, 1993), pp. 181–186.
  6. J.-M. Conan, “Étude de la correction partielle en optique adaptative,” Ph.D. dissertation (Université de Paris XI, Orsay, France, 1994).
  7. N. S. Kopeika, I. Dror, D. Sadot, “The causes of atmospheric blur: comment on “Atmospheric scattering effect on spatial resolution of imaging systems,” J. Opt. Soc. Am. A 15, 3097–3106 (1998). [CrossRef]
  8. G. R. Ochs, T. Wang, R. S. Lawrence, S. F. Clifford, “Refractive-turbulence profiles measured by one-dimensional spatial filtering of scintillations,” Appl. Opt. 15, 2504–2510 (1978). [CrossRef]
  9. L. E. Herman, “Atmospheric optics,” in Handbook of Geophysics and Space Environments, S. C. Valley, ed. (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1965), Sec. 7.1; see also succeeding handbook editions.
  10. D. Sadot, N. S. Kopeika, “Forecasting optical turbulence strength on the basis of macroscale meteorology and aerosols: models and validation,” Opt. Eng. 31, 200–212 (1992). [CrossRef]
  11. N. S. Kopeika, A System Engineering Approach to Imaging, Vol. PM38 of SPIE Press Monograph Series (SPIE Press, Bellingham, Wash., 1998).
  12. D. Sadot, N. S. Kopeika, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol MTF,” J. Opt. Soc. Am. A 10, 172–179 (1993). [CrossRef]
  13. D. Sadot, G. Kitron, N. Kitron, N. S. Kopeika, “Thermal imaging through the atmosphere: atmospheric MTF theory and verification,” Opt. Eng. 33, 880–887 (1994). [CrossRef]
  14. D. Sadot, A. Dvir, I. Bergel, N. S. Kopeika, “Restoration of thermal images distorted by the atmosphere, based upon measured and theoretical atmospheric modulation transfer function,” Opt. Eng. 33, 44–53 (1994). [CrossRef]
  15. I. Dror, N. S. Kopeika, “Aerosol and turbulence modulation transfer functions: comparison measurements in the open atmosphere,” Opt. Lett. 17, 1532–1534 (1992). [CrossRef] [PubMed]
  16. D. Sadot, A. Melamed, N. Dinur, N. S. Kopeika, “Effects of aerosol forward scatter on long and short exposure atmospheric coherence diameter,” Waves Random Media 4, 487–498 (1994). [CrossRef]
  17. I. Dror, N. S. Kopeika, “Experimental comparison of turbulence modulation transfer function and aerosol modulation transfer function through the open atmosphere,” J. Opt. Soc. Am. A 12, 970–980 (1995). [CrossRef]
  18. N. S. Kopeika, D. Sadot, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function: reply to comment,” J. Opt. Soc. Am. A 12, 1017–1023 (1995). [CrossRef]
  19. R. Melamed, Y. Yitzhaky, N. S. Kopeika, S. R. Rotman, “Experimental comparison of three target acquisition models,” Opt. Eng. 37, 1902–1913 (1998). [CrossRef]
  20. D. Sadot, R. Rosenfeld, G. Shuker, N. S. Kopeika, “High resolution restoration of images distorted by the atmosphere, based upon average atmospheric MTF,” Opt. Eng. 34, 1799–1807 (1995). [CrossRef]
  21. M. C. Roggemann, B. Welsh, Imaging through Turbulence (CRC Press, Boca Raton, Fla., 1996).
  22. R. R. Beland, “Propagation through atmospheric optical turbulence,” in Atmospheric Propagation of Radiation, F. G. Smith, ed., Vol. 2 of the Infrared and Electro-Optical Systems Handbook, J. S. Accetta, D. L. Shumaker, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1993), Chap. 2.
  23. M. G. Miller, P. L. Zieske, “Turbulence environment characterization,” (Rome Air Development Center, Rome, N.Y., 1979).
  24. R. R. Beland, J. H. Brown, R. E. Good, E. A. Murphy, “Optical turbulence characterization of AMOS, 1985,” (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1988).
  25. R. E. Good, R. R. Beland, E. A. Murphy, J. H. Brown, E. M. Dewan, “Atmospheric models of optical turbulence,” in Modeling of the Atmosphere, L. S. Rothman, ed., Proc. SPIE928, 165–186 (1988).
  26. F. P. Battles, E. A. Murphy, J. P. Noonan, “The contribution of atmospheric density to the drop-off rage of Cn2,” Phys. Scr.151–153 (1988).
  27. J. H. Brown, R. R. Beland, “A site comparison of optical turbulence in the lower stratosphere at night using thermosonde data,” Phys. Scr. 37, 424–426 (1988). [CrossRef]
  28. J. H. Brown, R. R. Beland, “A deterministic temperature for stratospheric optical turbulence,” Phys. Scr. 37, 419–423 (1988). [CrossRef]
  29. G. C. Valley, “Isoplanatic degradation of tilt correction and short-term imaging systems,” Appl. Opt. 19, 574–577 (1980). [CrossRef] [PubMed]
  30. P. B. Ulrich, “Hufnagel–Valley profiles for specified values of the coherence length and isoplanatic angle,” (W. J. Schafer Associates, New York, 1988).
  31. T. E. Van Zandt, J. L. Green, K. S. Gage, W. L. Clark, “Vertical profiles of refractivity turbulence structure constant: comparison of observations by the Sunset Radar with a new theoretical model,” Radio Sci. 13, 819–828 (1978). [CrossRef]
  32. J. M. Warnock, T. E. Van Zandt, “A statistical model to estimate the refractivity turbulence structure constant Cn2 in the free atmosphere,” (NOAA Environmental Research Laboratory, Boulder, Colo., 1985).
  33. C. E. Coulman, J. Vernin, Y. Coqueugnoit, J. L. Caccia, “Outer scale of turbulence appropriate to modeling refractive-index profiles,” Appl. Opt. 27, 155–160 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited