OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 15 — May. 20, 2000
  • pp: 2433–2436

Quasi-resonant nonlinear absorption for optical power limiting: solgel-processed Er3+-doped multicomponent silica glass

Glauco S. Maciel, Abani Biswas, Christopher S. Friend, and Paras N. Prasad  »View Author Affiliations

Applied Optics, Vol. 39, Issue 15, pp. 2433-2436 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (111 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate optical power limiting by what we believe to be a new mechanism of nonlinear absorption, which involves a quasi-resonant ground-state absorption that is either phonon assisted or assisted by the presence of defect sites (tail absorption). Such a mechanism provides high transmittance at low intensity yet optical limiting under cw conditions. The sample used was a novel solgel-processed Er3+-doped multicomponent silica glass. In this system the nonlinear absorption process is achieved because the resonant excited-state (4I13/24S3/2) absorption cross section is larger than the quasi-resonant ground-state (4I15/24I9/2) absorption cross section.

© 2000 Optical Society of America

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(230.1150) Optical devices : All-optical devices
(300.1030) Spectroscopy : Absorption

Original Manuscript: September 27, 1999
Revised Manuscript: February 18, 2000
Published: May 20, 2000

Glauco S. Maciel, Abani Biswas, Christopher S. Friend, and Paras N. Prasad, "Quasi-resonant nonlinear absorption for optical power limiting: solgel-processed Er3+-doped multicomponent silica glass," Appl. Opt. 39, 2433-2436 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. W. Tutt, T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993). [CrossRef]
  2. See, for example, R. Crane, K. Lewis, E. Van Stryland, M. Khoshnevisan, eds., Materials for Optical Limiting, Mater. Res. Soc. Symp. Proc.374 (1995); R. Sutherland, R. Pachter, P. Hood, D. Hagan, K. Lewis, J. Perry, eds., Materials for Optical Limiting II, Mater. Res. Soc. Symp. Proc.479 (1997).
  3. J. D. Bhawalkar, G. S. He, P. N. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials,” Rep. Prog. Phys. 59, 1041–1070 (1996);M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998). [CrossRef] [PubMed]
  4. L. Huff, L. G. DeShazer, “Saturation of optical transitions in organic compounds by laser flux,” J. Opt. Soc. Am. 60, 157–165 (1970);D. J. Harter, M. L. Shand, Y. B. Band, “Power/energy limiter using reverse saturable absorption,” J. Appl. Phys. 56, 865–868 (1984); Y. P. Sun, J. E. Riggs, “Organic and inorganic optical limiting materials: from fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18, 43–90 (1999). [CrossRef]
  5. C. B. de Araújo, G. S. Maciel, N. Rakov, Y. Messaddeq, “Giant nonlinear absorption in Er3+-doped fluoroindate glass,” J. Non-Cryst. Solids 247, 209–214 (1999). [CrossRef]
  6. A. Biswas, C. S. Friend, G. S. Maciel, P. N. Prasad, “Optical properties of Europium doped gels during densification,” J. Non-Cryst. Solids 261, 9–14 (2000). [CrossRef]
  7. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962); G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962). [CrossRef]
  8. M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983). [CrossRef]
  9. R. C. Stoneman, J. G. Lynn, L. Esterowitz, “Direct upper-state pumping of the 2.8 µm Er3+:YLF laser,” IEEE J. Quantum Electron. 28, 1041–1045 (1992). [CrossRef]
  10. M. P. Joshi, J. Swiatkiewicz, F. Xu, P. N. Prasad, B. A. Reinhardt, R. Kannan, “Energy transfer coupling of two-photon absorption and reverse saturable absorption for enhanced optical power limiting,” Opt. Lett. 23, 1742–1744 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited