OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 15 — May. 20, 2000
  • pp: 2437–2440

Two-photon absorbing properties of ultraviolet phase-matchable crystals at 264 and 211 nm

Audrius Dubietis, Gintaras Tamošauskas, Ar̅unas Varanavičius, and Gintaras Valiulis  »View Author Affiliations


Applied Optics, Vol. 39, Issue 15, pp. 2437-2440 (2000)
http://dx.doi.org/10.1364/AO.39.002437


View Full Text Article

Enhanced HTML    Acrobat PDF (86 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigated the intensity-dependent loss properties of nonlinear crystals by using subpicosecond laser pulses at 264 and 211 nm. Two-photon absorption coefficients for potassium dihydrogen phosphate, β-barium borate, and lithium triborate crystals were obtained from the intensity-dependent transmission measurements.

© 2000 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.4180) Nonlinear optics : Multiphoton processes

History
Original Manuscript: September 29, 1999
Revised Manuscript: March 2, 2000
Published: May 20, 2000

Citation
Audrius Dubietis, Gintaras Tamošauskas, Ar̅unas Varanavičius, and Gintaras Valiulis, "Two-photon absorbing properties of ultraviolet phase-matchable crystals at 264 and 211 nm," Appl. Opt. 39, 2437-2440 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-15-2437


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Ringling, O. Kittelmann, F. Noack, G. Korn, J. Squier, “Tunable femtosecond pulses in the near vacuum ultraviolet generated by frequency conversion of amplified Ti:sapphire laser pulses,” Opt. Lett. 18, 2035–2037 (1993). [CrossRef] [PubMed]
  2. F. Seifert, J. Ringling, F. Noack, V. Petrov, O. Kittelmann, “Generation of tunable femtosecond pulses to as low as 172.7 nm by sum-frequency mixing in lithium triborate,” Opt. Lett. 19, 1538–1540 (1994). [CrossRef] [PubMed]
  3. F. Rotermund, V. Petrov, “Generation of the fourth harmonic of a femtosecond Ti:sapphire laser,” Opt. Lett. 23, 1040–1042 (1998). [CrossRef]
  4. V. Petrov, F. Rotermund, F. Noack, “Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O8 · 4H2O,” Electron. Lett. 34, 1748–1750 (1998). [CrossRef]
  5. A. J. Taylor, R. B. Gibson, J. P. Roberts, “Two-photon absorption at 248 nm in ultraviolet window materials,” Opt. Lett. 13, 814–816 (1988). [CrossRef] [PubMed]
  6. P. Simon, H. Gerhardt, S. Szatmari, “Intensity-dependent loss properties of window materials at 248 nm,” Opt. Lett. 14, 1207–1209 (1989). [CrossRef] [PubMed]
  7. O. Kittelmann, J. Ringling, “Intensity-dependent transmission properties of window materials at 193-nm irradiation,” Opt. Lett. 19, 2053–2055 (1994). [CrossRef] [PubMed]
  8. P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4631 (1978). [CrossRef]
  9. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996). [CrossRef]
  10. A. Dubietis, G. Tamošauskas, A. Varanavičius, G. Valiulis, R. Danielius, “Highly efficient subpicosecond pulse generation at 211 nm,” J. Opt. Soc. Am. B 17, 48–52 (2000). [CrossRef]
  11. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996).
  12. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials (Wiley, New York, 1997).
  13. G. G. Gurzadyan, R. K. Ispiryan, “Two-photon absorption peculiarities of potassium dihydrogen phosphate crystal at 216 nm,” Appl. Phys. Lett. 59, 630–631 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited