OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 15 — May. 20, 2000
  • pp: 2475–2479

Narrow-linewidth vertical-cavity surface-emitting lasers for oxygen detection

Hans P. Zappe, Martin Hess, Michael Moser, Rainer Hövel, Karlheinz Gulden, Hans-Peter Gauggel, and Fabrice Monti di Sopra  »View Author Affiliations

Applied Optics, Vol. 39, Issue 15, pp. 2475-2479 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (83 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The use of vertical-cavity surface-emitting lasers (VCSEL’s) for optical detection of atmospheric oxygen is described. The VCSEL’s were custom designed for single-mode emission in the 763-nm wavelength range, with low noise and narrow optical linewidth. Using standard wavelength modulation spectroscopy and a second-harmonic detection scheme with a 1-m air path, we determined an oxygen concentration resolution of 0.2%. Because of its small size, low power dissipation, and good tunability characteristics, the VCSEL promises to be an attractive light source for use in compact, low-cost optical sensor microsystems for trace gas detection.

© 2000 Optical Society of America

OCIS Codes
(140.3570) Lasers and laser optics : Lasers, single-mode
(280.3420) Remote sensing and sensors : Laser sensors
(300.6260) Spectroscopy : Spectroscopy, diode lasers

Original Manuscript: September 15, 1999
Revised Manuscript: February 14, 2000
Published: May 20, 2000

Hans P. Zappe, Martin Hess, Michael Moser, Rainer Hövel, Karlheinz Gulden, Hans-Peter Gauggel, and Fabrice Monti di Sopra, "Narrow-linewidth vertical-cavity surface-emitting lasers for oxygen detection," Appl. Opt. 39, 2475-2479 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Garzon, I. Raistrick, E. Brosha, R. Houlton, B. W. Chung, “Dense diffusion barrier limiting current oxygen sensors,” Sens. Actuators B 50, 125–130 (1998). [CrossRef]
  2. J. Ried, J. Shewchun, B. K. Garside, E. A. Balik, “High sensitivity pollution detection employing tunable diode lasers,” Appl. Opt. 17, 300–307 (1978). [CrossRef]
  3. D. T. Casssidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982). [CrossRef]
  4. M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using laser diode spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987). [CrossRef]
  5. P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Wideband noise characteristics of a lead salt diode laser: possibility of quantum noise limited TDLAS performance,” Appl. Opt. 28, 1638–1642 (1989). [CrossRef] [PubMed]
  6. D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992). [CrossRef] [PubMed]
  7. V. Weldon, J. O’Gorman, P. Phelan, T. Tanbun-Ek, “Gas sensing with λ = 1.57 µm distributed feedback laser diodes using overtone and combination band absorption,” Opt. Eng. 33, 3867–3870 (1994). [CrossRef]
  8. V. Weldon, J. O’Gorman, P. Phelan, J. Hegarty, T. Tanbun-Ek, “H2S and CO2 gas sensing using DFB laser diodes emitting at λ = 1.57 µm,” Sens. Actuators B 29, 101–107 (1995). [CrossRef]
  9. A. P. Larson, L. G. Sandström, S. Höjer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997). [CrossRef]
  10. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996). [CrossRef] [PubMed]
  11. C. Corsi, M. Gabrysch, M. Inguscio, “Detection of molecular oxygen at high temperature using a DFB-diode-laser at 761 nm,” Opt. Commun. 128, 35–40 (1996). [CrossRef]
  12. L. Gianfrani, G. Gagliardi, G. Pesce, A. Sasso, “High-sensitivity detection of NO2 using a 740 nm semiconductor diode laser,” Appl. Phys. B 64, 487–491 (1997). [CrossRef]
  13. V. Weldon, J. O’Gorman, J. J. Pérez-Camacho, D. McDonald, J. Hegarty, B. Corbett, “Methane sensing with a novel micromachined single-frequency Fabry–Perot laser diode emitting at 1331 nm,” IEEE Photonics Technol. Lett. 9, 357–359 (1997). [CrossRef]
  14. D. Hovde, C. A. Parsons, “Wavelength modulation detection of water vapor with a vertical cavity surface-emitting laser,” Appl. Opt. 36, 1135–1138 (1997). [CrossRef] [PubMed]
  15. V. Weldon, J. O’Gorman, J. J. Pérez-Camacho, J. Hegarty, “Oxygen sensing using single-frequency GaAs-AlGaAs DFB laser diodes and VCSELs,” Electron. Lett. 32, 219–221 (1996). [CrossRef]
  16. M. Moser, K. H. Gulden, J. Epler, H. P. Schweizer, “High performance deep red AlAs/AlGaAs top-emitting VCSELs grown by MOVPE at high growth rates,” J. Cryst. Growth 170, 404–407 (1997). [CrossRef]
  17. S. Tranchart, I. H. Bachir, J.-L. Destombes, “Sensitive trace gas detection with near-infrared laser diodes and an integrating sphere,” Appl. Opt. 35, 7070–7074 (1996). [CrossRef] [PubMed]
  18. J. Reid, D. Labrie, “Second harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl. Opt. 26, 203–210 (1981).
  19. HITRAN92, version 2.31 (Ontar Corporation, North Andover, Mass., 1994).
  20. I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using laser diode spectroscopy,” Appl. Phys. B 67, 297–305 (1998). [CrossRef]
  21. W. B. Bewley, C. L. Felix, I. Vurgaftman, E. H. Aifer, L. J. Olafsen, J. R. Meyer, L. Goldberg, D. H. Chow, “Mid-infrared vertical-cavity surface-emitting lasers for chemical sensing,” Appl. Opt. 38, 1502–1505 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited