OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 15 — May. 20, 2000
  • pp: 2499–2506

Waveguide photodegradation of nonlinear optical organic chromophores in polymeric films

Yitao Ren, Marek Szablewski, and Graham H. Cross  »View Author Affiliations


Applied Optics, Vol. 39, Issue 15, pp. 2499-2506 (2000)
http://dx.doi.org/10.1364/AO.39.002499


View Full Text Article

Enhanced HTML    Acrobat PDF (145 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Waveguide photodegradation studies have been carried out to investigate the photostabilities of a series of nonlinear optical chromophores doped into poly(methyl methacrylate) waveguide films. The films were exposed to optical wavelengths lying either within these materials’ main absorption bands or in the near-infrared region. Degradation studies were carried out in air, vacuum, and nitrogen environments at room temperature. Experimental results indicate that the principal photodegradation mechanism in operation is photo-oxidation. A simple analytical model indicated the relative sensitivity to photo-oxidation of the materials studied.

© 2000 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(160.4890) Materials : Organic materials
(310.2790) Thin films : Guided waves
(310.6860) Thin films : Thin films, optical properties
(350.5130) Other areas of optics : Photochemistry

History
Original Manuscript: September 24, 1999
Revised Manuscript: February 17, 2000
Published: May 20, 2000

Citation
Yitao Ren, Marek Szablewski, and Graham H. Cross, "Waveguide photodegradation of nonlinear optical organic chromophores in polymeric films," Appl. Opt. 39, 2499-2506 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-15-2499


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989). [CrossRef]
  2. C. F. Kane, R. R. Krchnavek, “Processing and characterization of benzocyclobutene optical waveguides,” IEEE Trans. Components Packag. Manuf. Technol. Part B 18, 565–571 (1995). [CrossRef]
  3. M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14, 2338–2343 (1996). [CrossRef]
  4. Th. Knoche, L. Müller, R. Klein, A. Neyer, “Low loss polymer waveguides at 1300 and 1500 nm using halogenated acrylates,” Electron. Lett. 32, 1284–1285 (1996). [CrossRef]
  5. J. Kobayashi, T. Matsuura, S. Sasaki, T. Maruno, “Directional couplers using fluorinated polyimide waveguides,” J. Lightwave Technol. 16, 610–614 (1998). [CrossRef]
  6. L. A. Hornak, Polymers for lightwave and integrated optics (Marcel Dekker, New York, 1992), Chaps. 1 and 2.
  7. R. Sastre, A. Costela, “Polymeric solid-state dye lasers,” Adv. Mater. 7, 198–202 (1995). [CrossRef]
  8. K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Dyes in modified polymers: problems of photostability and conversion efficiency at high intensities,” J. Opt. Soc. Am. B 9, 143–151 (1992). [CrossRef]
  9. A. Costela, I. Garcia-Moreno, J. Barraso, R. Sastre, “Laser performance of Coumarin 540A dye molecules in polymeric host media with different viscosities: from liquid solution to solid polymer matrix,” J. Appl. Phys. 83, 650–660 (1998). [CrossRef]
  10. W.-Y. Hwang, M.-C. Oh, H.-M. Lee, H. Park, J.-J. Kim, “Polymeric 2 × 2 electrooptic switch consisting of asymmetric Y junctions and Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 9, 761–763 (1997). [CrossRef]
  11. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997). [CrossRef]
  12. T. Watanabe, M. Hikita, M. Amano, Y. Shuto, S. Tomaru, “Vertically stacked coupler and serially grafted waveguide: hybrid waveguide structures formed using an electro-optic polymer,” J. Appl. Phys. 83, 639–649 (1998). [CrossRef]
  13. Q. Zhang, M. Canva, G. Stegeman, “Wavelength dependence of 4-dimethylamino-4′-nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998). [CrossRef]
  14. J. Vydra, H. Beisinghoff, T. Tschudi, M. Eich, “Photodecay mechanisms in side chain nonlinear optical polymethacrylates,” Appl. Phys. Lett. 69, 1035–1037 (1996). [CrossRef]
  15. J.-J. Kim, T. Zyung, W.-Y. Hwang, “Photochemically formed refractive index profiles in nonlinear optical polymer thin films,” Appl. Phys. Lett. 64, 3488–3490 (1994). [CrossRef]
  16. J. Ma, S. Lin, W. Feng, R. J. Feuerstein, B. Hooker, A. R. Mickelson, “Modeling photobleached optical polymer waveguides,” Appl. Opt. 34, 5352–5360 (1995). [CrossRef] [PubMed]
  17. T. Zyung, J.-J. Kim, “Photodegradation of poly(p-phenylenevinylene) by laser light at the peak wavelength of electroluminescence,” Appl. Phys. Lett. 67, 3420–3422 (1995). [CrossRef]
  18. M. A. Mortazavi, H. N. Yoon, C. C. Teng, “Optical power handling properties of polymeric nonlinear optical waveguides,” J. Appl. Phys. 74, 4871–4876 (1993). [CrossRef]
  19. R. A. Norwood, D. R. Holcomb, F. F. So, “Polymers for nonlinear optics: absorption, two-photon absorption and photodegradation,” Nonlin. Opt. 6, 193–204 (1993).
  20. N. Capolla, R. A. Lessard, “Real time bleaching of Methylene Blue or thionine sensitized gelatin,” Appl. Opt. 30, 1196–1200 (1991). [CrossRef] [PubMed]
  21. M. Szablewski, “Novel reactions of TCNQ: formation of zwitterions for nonlinear optics by reaction with examines,” J. Org. Chem. 59, 954–956 (1994). [CrossRef]
  22. M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J.-L. Brédas, W. Wenseleers, E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: synthesis, physical characterization, and theoretical aspects,” J. Am. Chem. Soc. 119, 3144–3154 (1997). [CrossRef]
  23. J. C. Cole, J. A. K. Howard, G. H. Cross, M. Szablewski, (Z)-{4-[1-cyano-3-(diethyliminio)-1-propenyl]phenyl}-dicyanomethanide, a novel ‘blue window’ zwitterionic molecule for nonlinear optics,” Acta Crystallogr. C 51, 715–718 (1995).
  24. C. Bosshard, K. Sutter, Ph. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, P. Günter, Organic Nonlinear Optical Materials, Vol. 1 of Advances in Nonlinear Optics (Gordon & Breach, Amsterdam, 1995), p 181.
  25. D. S. Chemla, J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, London, 1986), Vol. 1.
  26. P. K. Tien, G. Smolinsky, R. J. Martin, “Thin organo-silicon films for integrated optics,” Appl. Opt. 11, 637–642 (1972). [CrossRef] [PubMed]
  27. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10, 2395–2413 (1971). [CrossRef] [PubMed]
  28. M. Dumont, Z. Sekkat, R. Loucif-Saibi, K. Nakatini, J. A. Delaire, “Photoisomerization, photoinduced orientation and orientational relaxation in polymeric films,” Nonlin. Opt. 5, 395–406 (1993).
  29. A. Dubois, M. Canva, A. Brun, F. Chaput, J.-P. Boilot, “Photostability of dye molecules trapped in solid matrices,” Appl. Opt. 35, 3193–3199 (1996). [CrossRef] [PubMed]
  30. A. Dubois, M. Canva, A. Brun, F. Chaput, J.-P. Boilot, “Enhanced photostability of dye molecules trapped in solid xerogel matrices,” Synth. Met. 81, 305–308 (1996). [CrossRef]
  31. R. M. Siverstein, G. C. Basster, T. C. Morrill, Spectrometric Identification of Organic Compounds (Wiley, New York, 1981).
  32. P. R. Ogilby, M. Kristiansen, D. O. Martine, R. D. Scurlock, V. L. Taylor, R. L. Clough, “Formation and removal of singlet (a′Δg) oxygen in bulk polymers: events that may influence photodegradation,” in Polymer Durability: Degradation, Durability and Lifetime Prediction, R. L. Clough, N. C. Billingham, K. T. Gillen, eds. (American Chemical Society, Washington, D.C., 1996), pp. 113–126.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited