OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 16 — Jun. 1, 2000
  • pp: 2605–2613

Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning

Sungdo Cha, Paul C. Lin, Lijun Zhu, Pang-Chen Sun, and Yeshaiahu Fainman  »View Author Affiliations


Applied Optics, Vol. 39, Issue 16, pp. 2605-2613 (2000)
http://dx.doi.org/10.1364/AO.39.002605


View Full Text Article

Acrobat PDF (1353 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A confocal microscope profilometer, which incorporates chromatic depth scanning with a diffractive optical element and a digital micromirror device for configurable transverse scanning, provides three-dimensional (3D) quantitative measurements without mechanical translation of either the sample or the microscope. We used a microscope with various objective lenses (e.g., 40×, 60×, and 100×) to achieve different system characteristics. With a 100× objective, the microscope acquires stable measurements over a 320 μm × 240 μm surface area with a depth resolution of 0.39 μm at a 3-Hz scan rate. The total longitudinal field of view is 26.4 μm for a wavelength tuning range of 48.3 nm. The FWHM value of the longitudinal point-spread function is measured to be 0.99 μm. We present 3D measurements of a four-phase-level diffractive element and an integrated-circuit chip. The resolution and the accuracy are shown to be equivalent to those found with use of conventional mechanical scanning.

© 2000 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(180.1790) Microscopy : Confocal microscopy

Citation
Sungdo Cha, Paul C. Lin, Lijun Zhu, Pang-Chen Sun, and Yeshaiahu Fainman, "Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning," Appl. Opt. 39, 2605-2613 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-16-2605


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Minsky, “Microscopy apparatus,” U.S. patent 3,013,467 (19 December 1961).
  2. D. K. Hamilton, T. Wilson, and C. J. R. Sheppard, “Experimental observations of depth-discrimination properties of scanning microscopes,” Opt. Lett. 6, 625–626 (1981).
  3. T. Wilson and S. J. Hewlett, “Superresolution in confocal scanning microscopy,” Opt. Lett. 16, 1062–1064 (1991).
  4. J. B. Pawley, Handbook of Biological Confocal Microscopy (Plenum, New York, 1989).
  5. D. K. Hamilton and T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B 27, 211–213 (1982).
  6. T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).
  7. G. Q. Xiao, T. R. Corle, and G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
  8. C. J. R. Sheppard and X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35, 1169–1185 (1988).
  9. M. Liang, R. L. Stehr, and A. W. Krause, “Confocal pattern period multiple-aperture confocal imaging system with coherent illumination,” Opt. Lett. 22, 751–753 (1997).
  10. P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. Van Vliet, and T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope,” J. Microsc. 189, 192–198 (1998).
  11. Q. S. Hanly, P. J. Verveer, and T. M. Jovin, “Optical sectioning fluorescence spectroscopy in a programmable array microscope,” Appl. Spectrosc. 52, 783–789 (1998).
  12. S. Cha, P. C. Lin, L. Zhu, E. L. Botvinick, P. C. Sun, and Y. Fainman, “3D profilometry using a dynamically configurable confocal microscope,” in Sensors, Cameras, and Applications for Digital Photography, N. Sampat and T. Yeh, eds., Proc. SPIE 3640, 246–253 (1999).
  13. G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
  14. M. A. Browne, O. Akinyemi, and A. Boyde, “Confocal surface profiling using chromatic aberration,” Scanning 14, 145–153 (1992).
  15. M. Maly and A. Boyde, “Real-time stereoscopic confocal reflection microscopy using objective lens with linear longitudinal chromatic dispersion,” Scanning 16, 187–192 (1994).
  16. S. Dobson, P. C. Sun, and Y. Fainman, “Diffractive lenses for chromatic confocal imaging,” Appl. Opt. 36, 4744–4748 (1997).
  17. P. C. Lin, P. C. Sun, L. Zhu, and Y. Fainman, “Single-shot depth-section imaging through chromatic slit-scan confocal microscopy,” Appl. Opt. 37, 6764–6770 (1998).
  18. J. B. Sampsell, “Digital micromirror device and its application to projection displays,” J. Vac. Sci. Technol. B 12, 3242–3246 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited