OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 16 — Jun. 1, 2000
  • pp: 2620–2627

Adaptive systems in speckle-pattern interferometry

János Kornis, Zoltán Füzessy, and Attila Németh  »View Author Affiliations

Applied Optics, Vol. 39, Issue 16, pp. 2620-2627 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (4252 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The concept of adaptivity in television holography is discussed, and various realizations of adaptivity are presented. In one possible variation, functions of the components of the optical arrangement may be changed to adapt them to measurement conditions. An additional peculiarity of the technique is that reference waves are produced by holographically reconstructed virtual images. A method, believed to be new, is introduced for synthesizing the phase front of the master object beam that is produced by a simple holographic optical element and is used as a smooth or a speckled reference beam in the electronic speckle-pattern interferometer. An adaptive interferometer is presented as a measuring device for various measuring tasks. Selected applications are shown, demonstrating different aspects of adaptivity.

© 2000 Optical Society of America

OCIS Codes
(090.2890) Holography : Holographic optical elements
(110.6150) Imaging systems : Speckle imaging
(120.6160) Instrumentation, measurement, and metrology : Speckle interferometry

Original Manuscript: November 22, 1999
Published: June 1, 2000

János Kornis, Zoltán Füzessy, and Attila Németh, "Adaptive systems in speckle-pattern interferometry," Appl. Opt. 39, 2620-2627 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Kujavinska, C. Kosinski, “Adaptability: problem or solution?” in Proceedings of the Third International Workshop on Automatic Processing of Fringe Patterns, W. Jüptner, W. Osten, eds. (Akademie-Verlag, Berlin, 1997), pp. 419–431.
  2. I. Yamaguchi, J. Liu, J. Kato, “Active phase-shifting interferometers for shape and deformation measurements,” Opt. Eng. 35, 2930–2937 (1996). [CrossRef]
  3. E. A. Barbosa, J. Frejlich, V. V. Prokofiev, N. J. H. Gallo, J. P. Andreeta, “Adaptive holographic interferometry for two-dimensional vibration mode display,” Opt. Eng. 33, 2659–2662 (1994). [CrossRef]
  4. A. Olszak, K. Patorski, “Modified electronic speckle-pattern interferometer with reduced number of elements for vibration analysis,” Opt. Commun. 138, 265–269 (1997). [CrossRef]
  5. M. Melozzi, L. Pezzati, A. Mazzoni, “Vibration-insensitive interferometer for on-line measurements,” Appl. Opt. 34, 5595–5601 (1995). [CrossRef] [PubMed]
  6. A. A. Freschi, J. Frejlich, “Adjustable phase control in stabilized interferometry,” Opt. Lett. 20, 635–637 (1995). [CrossRef] [PubMed]
  7. J. Kato, I. Yamaguchi, Q. Ping, “Automatic deformation analysis by a TV speckle interferometer using a laser diode,” Appl. Opt. 32, 77–83 (1993). [CrossRef] [PubMed]
  8. O. Sasaki, K. Takahashi, T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng. 29, 1511–1515 (1990). [CrossRef]
  9. J. L. Marroquin, M. Servin, R. Rodriguez-Vera, “Adaptive quadrature filters and the recovery of phase from fringe pattern images,” J. Opt. Soc. Am. A 14, 1742–1753 (1997). [CrossRef]
  10. J. A. Quiroga, A. Gonzalez-Cano, E. Bernabeu, “Phase-unwrapping algorithm based on an adaptive criterion,” Appl. Opt. 34, 2560–2563 (1985). [CrossRef]
  11. R. Sundaram, O. K. Ersoy, D. Hansen, “Adaptive approach to edge detection,” Opt. Eng. 34, 3271–3276 (1995). [CrossRef]
  12. C. Joenathan, R. S. Sirohi, “Holographic gratings in speckle shearing interferometry,” Appl. Opt. 24, 2750–2751 (1985). [CrossRef] [PubMed]
  13. C. Joenathan, R. K. Mohanty, R. S. Sirohi, “Lateral shear interferometry with shear lens,” Opt. Commun. 52, 153–156 (1984). [CrossRef]
  14. C. Joenathan, V. Parthiban, R. S. Sirohi, “Shear interferometry with holographic lenses,” Opt. Eng. 26, 359–364 (1987). [CrossRef]
  15. C. Joenathan, R. K. Mohanty, R. S. Sirohi, “Hololens in speckle and speckle shear interferometry,” Appl. Opt. 24, 1294–1298 (1985). [CrossRef] [PubMed]
  16. V. Petrov, B. Lau, “Electronic speckle pattern interferometry with a holographically generated reference wave,” Opt. Eng. 35, 2363–2370 (1997). [CrossRef]
  17. I. László, Z. Füzessy, J. Kornis, F. Gyimesi, “Comparative digital speckle pattern interferometry,” in Simulation and Experiment in Laser Metrology: Proceedings of the International Symposium on Laser Applications in Precision Measurements, Z. Füzessy, W. Jüptner, W. Osten, eds. (Akademie-Verlag, Berlin, 1996), pp. 146–150.
  18. Z. Füzessy, F. Gyímesi, B. Ráczkevi, J. Makai, J. Kornis, I. László, “Holographic illumination for comparative measurement,” Opt. Commun. 132, 29–34 (1996). [CrossRef]
  19. J. Kornis, A. Németh, I. László, “Measurement of wide scale displacement with difference digital speckle pattern interferometry,” in Proceedings of the Third International Workshop on Automatic Processing of Fringe Patterns, W. Jüptner, W. Osten, eds. (Akademie-Verlag, Berlin, 1997), pp. 337–340.
  20. N. A. Moustafa, J. Kornis, Z. Füzessy, “Comparative measurement by phase-shifting digital speckle interferometry using holographically generated reference wave,” Opt. Eng. 38, 1241–1245 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited