OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 16 — Jun. 1, 2000
  • pp: 2705–2718

Modeling and measurements of atomic surface roughness

Yoshiharu Namba, Jin Yu, Jean M. Bennett, and Koujun Yamashita  »View Author Affiliations

Applied Optics, Vol. 39, Issue 16, pp. 2705-2718 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (1348 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a geometrical model of atomic topography with which to obtain a quantitative assessment of surface roughness. A series of two- and three-dimensional atomic surface roughness equations with sufficiently realistic parameters is developed to permit quantitative comparison with scanning-tunneling microscope and atomic-force microscope (AFM) experimental results. The model is sufficiently simple that one can easily use it to interpret experimental data. Tables are provided with estimated values for two- and three-dimensional rms atomic surface roughness in pure metal crystals and ionic crystals based on the atomic surface roughness equations. We use these roughness equations to determine the roughness of cleaved muscovite mica [essentially, KAl2(OH)2Si3AlO10]; the calculated values for both two- and three-dimensional roughness are consistent with those obtained in our AFM measurements. In addition, we demonstrate both theoretically and experimentally that atomic surface roughness is never zero.

© 2000 Optical Society of America

OCIS Codes
(120.6660) Instrumentation, measurement, and metrology : Surface measurements, roughness
(180.5810) Microscopy : Scanning microscopy
(240.5770) Optics at surfaces : Roughness

Original Manuscript: September 17, 1999
Revised Manuscript: February 11, 2000
Published: June 1, 2000

Yoshiharu Namba, Jin Yu, Jean M. Bennett, and Koujun Yamashita, "Modeling and measurements of atomic surface roughness," Appl. Opt. 39, 2705-2718 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Nishizawa, “Molecular layer epitaxy,” J. Electrochem. Soc. 132, 1197–1200 (1985). [CrossRef]
  2. Y. Aoyagi, “Atomic-layer growth of GaAs by modulated-continuous-wave laser metalorganic vapor-phase epitaxy,” J. Vac. Sci. Technol. B 5, 1460–1464 (1987). [CrossRef]
  3. T. Suntola, “Atomic layer epitaxy,” Thin Solid Films 216, 84–89 (1992). [CrossRef]
  4. M. Ishii, S. Iwai, T. Ueki, Y. Aoyagi, “Reflection-wavelength control method for layer-by-layer controlled x-ray multilayer mirrors,” Appl. Opt. 36, 2152–2156 (1997); M. Ishii, S. Iwai, H. Kawata, T. Ueki, Y. Aoyagi, “Atomic layer epitaxy of aluminum phosphide and its application to x-ray multilayer mirrors,” J. Cryst. Growth 180, 15–21 (1997). [CrossRef] [PubMed]
  5. R. A. Dragoset, R. D. Young, H. P. Layer, S. R. Mielczarek, E. C. Teague, R. J. Celotta, “Scanning tunneling microscopy applied to optical surfaces,” Opt. Lett. 11, 560–562 (1986). [CrossRef] [PubMed]
  6. R. A. Dragoset, T. V. Vorburger, “Scanning tunneling microscopy of a diamond-turned surface and a grating replica,” in Metrology: Figure and Finish, B. Truax, ed., Proc. SPIE749, 54–58 (1986).
  7. J. E. Griffith, D. A. Grigg, “Dimensional metrology with scanning probe microscopes,” J. Appl. Phys. 74, R83–R109 (1993). [CrossRef]
  8. J. Yu, L. Hou, W. Sh. Ma, J. L. Cao, J. Y. Yu, J. E. Yao, “Nanometer characterization of single point diamond-turned mirrors on the micrometer and sub-micrometer scale,” J. Vac. Sci. Technol. B 12, 1835–1838 (1994). [CrossRef]
  9. J. M. Bennett, J. Jahanmir, J. C. Podlesny, T. L. Balter, D. T. Hobbs, “Scanning force microscope as a tool for studying optical surfaces,” Appl. Opt. 34, 213–230 (1995). [CrossRef] [PubMed]
  10. J. M. Bennett, M. M. Tehrani, J. Jahanmir, J. C. Podlesny, T. L. Balter, “Topographic measurements of supersmooth dielectric films made with a mechanical profiler and a scanning force microscope,” Appl. Opt. 34, 209–212 (1995). [CrossRef] [PubMed]
  11. J. Yu, J. L. Cao, Y. Namba, Y. Y. Ma, “Surface roughness characterization of soft x-ray multilayer films on the nanometer scale,” J. Vac. Sci. Technol. B 14, 42–47 (1996). [CrossRef]
  12. G. Binning, H. Rohrer, Ch. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982). [CrossRef]
  13. G. Binning, C. F. Quate, Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986). [CrossRef]
  14. J. Yu, Y. Namba, “Atomic surface roughness,” Appl. Phys. Lett. 73, 3607–3609 (1998). [CrossRef]
  15. J. Yu, L. Hou, J. Wei, J. E. Yao, J. L. Cao, J. Y. Yu, “Scanning tunneling microscope to evaluate supersmooth surface roughness,” in Current Developments in Optical Design and Optical Engineering II, R. E. Fischer, W. J. Smith, eds., Proc. SPIE1752, 123–131 (1992). [CrossRef]
  16. A. S. Povarennykh, Crystal Chemical Classification of Minerals, J. E. S. Bradley, transl. (Plenum, New York, 1972), Vol. 1, p. 42.
  17. C. Klein, C. S. Hurlbut, Manual of Mineralogy, 21st ed. (Wiley, New York, 1993).
  18. A. F. Wells, Structural Inorganic Chemistry, 5th ed. (Clarendon, Oxford, 1991).
  19. B. Drake, C. B. Prater, A. L. Weisenhorn, S. A. C. Gould, T. R. Albrecht, C. F. Quate, D. S. Cannell, H. G. Hansma, P. K. Hansma, “Imaging crystals, polymers, and processes in water with the atomic force microscope,” Science 243, 1586–1589 (1989). [CrossRef] [PubMed]
  20. T. Sugita, I. Yoshida, “Studies of cleaved surfaces of layered semi-metals, graphite and phyllo-silicates,” J. Surf. Sci. Soc. Jpn. 16, 664–672 (1995; in Japanese).
  21. I. Yoshida, T. Sugita, K. Sasaki, H. Hori, “Studies of cleaved surfaces of phyllo-silicates (talc, phlogopite and muscovite) by using AFM and LEED,” J. Surf. Sci. Soc. Jpn. 17, 30–36 (1996; in Japanese).
  22. R. Howland, L. Benatar, Practical Guide to Scanning Probe Microscopy (Park Scientific Instruments, Sunnyvale, Calif., 1993–1996).
  23. F. J. Giessibl, “Atomic force microscopy in ultrahigh vacuum,” Jpn. J. Appl. Phys. 33, 3726–3734 (1994). [CrossRef]
  24. G. Bining, “Force microscopy,” Ultramicroscopy 42–44, 7–15 (1992). [CrossRef]
  25. F. Ohnesorge, G. Binning, “True atomic resolution by atomic force microscopy through repulsive and attractive forces,” Science 260, 1451–1456 (1993). [CrossRef] [PubMed]
  26. Y. Sugawara, M. Ohta, H. Ueyama, S. Morita, “Defect motion on an InP(110) surface observed with noncontact atomic force microscopy,” Science 270, 1646–1648 (1995). [CrossRef]
  27. J. Tersoff, D. R. Hamann, “Theory of the scanning tunneling microscope,” Phys. Rev. 31, 805–813 (1985). [CrossRef]
  28. S. N. Magonov, M.-H. Wangbo, Surface Analysis with STM and AFM—Experimental and Theoretical Aspects of Image Analysis (Verlagsgesellschaft, Weinheim, Germany, 1996); “Interpreting STM and AFM images” Adv. Mater. 6, 355–371 (1994). [CrossRef]
  29. J. S. Bendat, A. G. Piersol, Random Data: Analysis and Measurement Procedures (Wiley-Interscience, New York, 1971).
  30. Technical Committee ISO/TC 57, International Standard ISO 4287/1, “Surface roughness—terminology. 1. Surface and its parameters,” (Geneva, Switzerland1984).
  31. R. D. Shannon, C. T. Prewitt, “Effective ionic radii in oxides and fluorides,” Acta Crystallogr. A 25, 925–946 (1969).
  32. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32, 751–767 (1976). [CrossRef]
  33. L. Pauling, The Nature of the Chemical Bond, 3rd ed. (Cornell U. Press, Ithaca, N.Y., 1960).
  34. L. H. Ahrens, “The use of ionization potentials,” Geochem. Cosmochim. Acta 2, 155–169 (1952). [CrossRef]
  35. R. E. Grim, Clay Mineralogy, 2nd ed. (McGraw-Hill, New York, 1968).
  36. Seiko Instruments, Inc., 1-8 Nakase, Mihama-ku, Chiba-shi, Chiba 261, Japan.
  37. Olympus Optical Company, Ltd., 2-43-2 Hatagaya Shibuyaku, Tokyo 151, Japan; web site: http://www.olympus.co.jp .
  38. M. Ohta, Y. Sugawara, K. Hontani, S. Morita, F. Osaka, M. Suzuki, H. Nagaoka, S. Mishima, T. Okada, “Atomically resolved image of cleaved GaAs (110) surface observed with an ultrahigh vacuum atomic force microscope,” Jpn. J. Appl. Phys. 33, L52–L54 (1994). [CrossRef]
  39. M. Ohta, H. Ueyama, Y. Sugawara, S. Morita, “Contrast of atomic-resolution images from a noncontact ultrahigh-vacuum atomic force microscope,” Jpn. J. Appl. Phys. 34, L1692–L1694 (1995). [CrossRef]
  40. Y. Sugawara, M. Ohta, H. Ueyama, S. Morita, “Atomic-resolution imaging of ZnSSe (110) surface with ultrahigh-vacuum atomic force microscope (UHV-AFM),” Jpn. J. Appl. Phys. 34, L462–L464 (1995). [CrossRef]
  41. H. J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms (Springer-Verlag, Berlin, 1982); R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1986). [CrossRef]
  42. J. M. Elson, J. M. Bennett, “Relation between the angular dependence of scattering and the statistical properties of optical surface,” J. Opt. Soc. Am. 69, 31–47 (1979). [CrossRef]
  43. J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering, 2nd ed. (Optical Society of America, Washington, D.C., 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited