OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 16 — Jun. 1, 2000
  • pp: 2858–2862

Optical Doppler velocimetry at various retinal vessel depths by variation of the source coherence length

Eric Logean, Leopold F. Schmetterer, and Charles E. Riva  »View Author Affiliations

Applied Optics, Vol. 39, Issue 16, pp. 2858-2862 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (129 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on what we believe is a novel approach to measuring the velocity of red blood cells (RBC’s) at different depths of retinal vessels by use of low-coherence sources. The technique, variable coherence optical Doppler velocimetry (VCODV), performs Doppler shift measurements through autodyne mixing between the light scattered by the RBC’s and by the vessel front wall (reference). Only the light from RBC’s moving at a depth less than half the coherence length (CL) mixes efficiently with the reference. Measurements of the Doppler shifts from RBC’s with sources of four different CL’s in a 152-µm vein of a volunteer confirmed the feasibility of VCODV. This approach has the potential to monitor in vivo retinal RBC velocity gradient at the vessel wall and the velocity profile within the blood vessel in the condition of symmetric blood flow profiles.

© 2000 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(170.4470) Medical optics and biotechnology : Ophthalmology

Original Manuscript: December 13, 1999
Revised Manuscript: March 24, 2000
Published: June 1, 2000

Eric Logean, Leopold F. Schmetterer, and Charles E. Riva, "Optical Doppler velocimetry at various retinal vessel depths by variation of the source coherence length," Appl. Opt. 39, 2858-2862 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Tanaka, C. E. Riva, I. Ben-Sira, “Blood velocity measurements in human retinal vessels,” Science 186, 830–831 (1974). [CrossRef] [PubMed]
  2. C. E. Riva, B. L. Petrig, J. E. Grunwald, “Retinal blood flow,” in Laser Doppler Blood Flowmetry, A. P. Shepherd, P. Å. Öberg, eds. (Kluwer, Boston, 1989), pp. 349–383.
  3. J. E. Grunwald, C. E. Riva, “Retinal blood flow in diabetes,” in Laser Doppler, G. V. Belcaro, U. Hoffmann, A. Bollinger, A. N. Nicolaides, eds. (Med-Orion, London, 1994), pp. 223–247.
  4. G. T. Feke, D. G. Goger, H. Tagawa, F. C. Delori, “Laser Doppler technique for absolute measurement of blood speed in retinal vessels,” IEEE Trans. Biomed. Eng. 34, 673–680 (1987). [CrossRef] [PubMed]
  5. A. R. Pries, T. W. Secomb, P. Gaehtgens, “Biophysical aspects of blood flow in the microvasculature,” Cardiovasc. Res. 32, 654–667 (1996). [PubMed]
  6. F. Fankhauser, H. Bebie, S. Kwasniewska, “The influence of mechanical forces and flow mechanisms on vessel occlusion,” Lasers Surg. Med. 6, 530–532 (1987). [CrossRef] [PubMed]
  7. R. M. Nerem, R. W. Alexander, D. C. Chappell, R. M. Medford, S. E. Varner, W. R. Taylor, “The study of the influence of flow on vascular endothelial biology,” Am. J. Med. Sci. 316, 169–175 (1998). [CrossRef] [PubMed]
  8. G. T. Feke, C. E. Riva, “Laser Doppler measurement of blood velocity in human retinal vessels,” J. Opt. Soc. Am. 68, 526–531 (1978). [CrossRef] [PubMed]
  9. C. E. Riva, B. L. Petrig, R. D. Shonat, C. J. Pournaras, “Scattering process in LDV from retinal vessels,” Appl. Opt. 28, 1078–1083 (1989). [CrossRef] [PubMed]
  10. C. E. Riva, J. E. Grunwald, S. H. Sinclair, K. O’Keefe, “Fundus camera based retinal LDV,” Appl. Opt. 20, 117–120 (1981). [CrossRef] [PubMed]
  11. B. L. Petrig, C. E. Riva, “Retinal laser Doppler velocimetry: toward its computer-assisted clinical use,” Appl. Opt. 27, 1126–1134 (1988). [CrossRef] [PubMed]
  12. B. L. Petrig, C. E. Riva, “Optic nerve head laser Doppler flowmetry: principle and computer analysis,” in Ocular Blood Flow, Glaucoma Meeting, 1995, H. J. Kaiser, J. Flammer, P. Hendrickson, eds. (Karger, Basel, Switzerland, 1995), pp. 120–127.
  13. C. E. Riva, J. E. Grunwald, B. L. Petrig, “Laser Doppler measurement of retinal blood velocity: validity of the single scattering model,” Appl. Opt. 24, 605–607 (1985). [CrossRef] [PubMed]
  14. M. D. Stern, “Laser Doppler velocimetry in blood and multiply scattering fluids: theory,” Appl. Opt. 24, 1968–1986 (1985). [CrossRef] [PubMed]
  15. T. Lindmo, D. J. Smithies, Z. Chen, J. S. Nelson, T. E. Milner, “Accuracy and noise in optical Doppler tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3045–3064 (1998). [CrossRef] [PubMed]
  16. S. Yazdanfar, A. M. Rollins, J. A. Izatt, “In vivo imaging of blood flow in human retinal vessels using color Doppler optical coherence tomography,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications III,V. V. Tuchin, J. A. Izatt, eds. Proc. SPIE3598, 177–184 (1999).
  17. S. Yazdanfar, A. M. Rollins, J. A. Izatt, “In vivo human retinal blood flow imaging using color Doppler optical coherence tomography,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), Postdeadline paper CPD12.
  18. X. J. Wang, T. E. Milner, J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20, 1337–1339 (1995). [CrossRef] [PubMed]
  19. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997). [CrossRef] [PubMed]
  20. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited