OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 17 — Jun. 10, 2000
  • pp: 2871–2880

Three-Dimensional Analysis of Subwavelength Diffractive Optical Elements with the Finite-Difference Time-Domain Method

Mark S. Mirotznik, Dennis W. Prather, Joseph N. Mait, William A. Beck, Shouyuan Shi, and Xiang Gao  »View Author Affiliations


Applied Optics, Vol. 39, Issue 17, pp. 2871-2880 (2000)
http://dx.doi.org/10.1364/AO.39.002871


View Full Text Article

Acrobat PDF (1459 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a three-dimensional (3D) analysis of subwavelength diffractive optical elements (DOE’s), using the finite-difference time-domain (FDTD) method. To this end we develop and apply efficient 3D FDTD methods that exploit DOE properties, such as symmetry. An axisymmetric method is validated experimentally and is used to validate the more general 3D method. Analyses of subwavelength gratings and lenses, both with and without rotational symmetry, are presented in addition to a 2 × 2 subwavelength focusing array generator.

© 2000 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.1970) Diffraction and gratings : Diffractive optics

Citation
Mark S. Mirotznik, Dennis W. Prather, Joseph N. Mait, William A. Beck, Shouyuan Shi, and Xiang Gao, "Three-Dimensional Analysis of Subwavelength Diffractive Optical Elements with the Finite-Difference Time-Domain Method," Appl. Opt. 39, 2871-2880 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-17-2871


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. W. Farn, “Binary gratings with increased efficiency,” Appl. Opt. 31, 4453–4458 (1992).
  2. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Blazed-binary subwavelength gratings with efficiencies larger than those of conventional echelette gratings,” Opt. Lett. 23, 1081–1083 (1998).
  3. T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
  4. M. S. Mirotznik, D. W. Prather, and J. N. Mait, “A hybrid finite-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1322 (1996).
  5. D. W. Prather, M. S. Mirotznik, and J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).
  6. K. Hirayama, E. N. Glytsis, T. K. Gaylord, and D. W. Wilson, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996).
  7. K. S. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
  8. A. Taflove, Computational Electromagnetics: The Finite-Difference Time Domain Method (Artech House, Boston, Mass., 1995).
  9. R. Luebbers, R. F. Hunsberger, K. Kunz, R. Standler, and M. Schneider, “A frequency dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222–229 (1990).
  10. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, Fla., 1993).
  11. D. Davidson and R. Ziolkowski, “Body-of-revolution finite-difference time-domain modeling of space-time focusing by a three-dimensional lens,” J. Opt. Soc. Am. A 11, 1471–1490 (1994).
  12. Y. Chen, R. Mittra, and P. Harms, “Finite-difference time-domain algorithm for solving maxwell’s equations in rotationally symmetric geometries,” IEEE Trans. Microwave Theory Tech. MTT-44, 832–839 (1996).
  13. D. W. Prather and S. Shi, “Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements,” J. Opt. Soc. Am. A 16, 1131–1142 (1999).
  14. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
  15. D. S. Katz, E. T. Thiele, and A. Taflove, “Validation and extension to three dimensions of the berenger PML absorbing boundary condition for FD-TD meshes,” IEEE Microwave Guid. Wave Lett. 4, 268–270 (1994).
  16. J. N. Mait, D. W. Prather, and M. S. Mirotznik, “Binary subwavelength diffractive-lens design,” Opt. Lett. 31, 1343–1345 (1998).
  17. S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14, 1617–1626 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited