OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 17 — Jun. 10, 2000
  • pp: 2965–2974

Topologies for optical interconnection networks based on the optical transpose interconnection system

David Coudert, Afonso Ferreira, and Xavier Muñoz  »View Author Affiliations


Applied Optics, Vol. 39, Issue 17, pp. 2965-2974 (2000)
http://dx.doi.org/10.1364/AO.39.002965


View Full Text Article

Enhanced HTML    Acrobat PDF (300 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Many results exist in the literature describing technological and theoretical advances in optical network topologies and design. However, an essential effort has yet to be made in linking those results together. We propose a step in this direction by giving optical layouts for several graph-theoretical topologies studied in the literature, using the optical transpose interconnection system (OTIS) architecture. These topologies include the family of partitioned optical passive star (POPS) and stack-Kautz networks as well as a generalization of the Kautz and the de Bruijn digraphs.

© 2000 Optical Society of America

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(060.4510) Fiber optics and optical communications : Optical communications
(200.3050) Optics in computing : Information processing
(200.4650) Optics in computing : Optical interconnects
(220.4830) Optical design and fabrication : Systems design

History
Original Manuscript: March 9, 2000
Published: June 10, 2000

Citation
David Coudert, Afonso Ferreira, and Xavier Muñoz, "Topologies for optical interconnection networks based on the optical transpose interconnection system," Appl. Opt. 39, 2965-2974 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-17-2965


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Feldman, S. Esener, C. Guest, S. Lee, “Comparison between electrical and free-space optical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988). [CrossRef] [PubMed]
  2. G. Yayla, P. Marchand, S. Esener, “Energy requirement and speed analysis of electrical and free-space optical digital interconnections,” in Optical Interconnections and Parallel Processing: Trends at the Interface, B. Berthomé, A. Ferreira, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 49–128.
  3. P. Dapkus, M. MacDougal, G. Yang, Y. Cheng, “Ultralow threshold VCSELs for application to smart pixels,” in Smart Pixels Technical Digest (IEEE Computer Society, Los Alamitos, Calif., 1996), p. 5.
  4. F. Sugihwo, M. Larson, J. Harris, “Low threshold continuously tunable vertical-cavity-surface-emitting-lasers with 19.1 nm wavelength range,” Appl. Phys. Lett. 70, 547 (1997). [CrossRef]
  5. D. Van Blerkom, C. Fan, M. Blume, S. Esener, “Transimpedance receiver design optimization for smart pixel arrays,” IEEE J. Lightwave Technol. 16, 119–126 (1998). [CrossRef]
  6. D. Gardner, P. Marchand, P. Harvey, L. Hendrick, S. Esener, “Photorefractive beam splitter for free-space optical interconnection systems,” Appl. Opt. 37, 6178–6181 (1998). [CrossRef]
  7. M. Ghisoni, H. Martinsson, N. Eriksson, M. Li, A. Larsson, J. Bengtsson, A. Khan, G. Parry, “4 × 4 fan-out spot generator using GaAs based VCSELs and diffractive optical element,” IEEE Photonics Technol. Lett. 9, 508 (1997). [CrossRef]
  8. G. Marsden, P. Marchand, P. Harvey, S. Esener, “Optical transpose interconnection system architectures,” Opt. Lett. 18, 1083–1085 (1993). [CrossRef] [PubMed]
  9. M. Blume, G. Marsden, P. Marchand, S. Esener, “Optical transpose interconnection system for vertical emitters,” presented at the OSA Topical Meeting on Optics in Computing, Optical Society of America, Lake Tahoe, Nevada, 18–21 March 1997.
  10. F. Zane, P. Marchand, R. Paturi, S. Esener, “Scalable network architectures using the optical transpose interconnection system,” in Proceedings of the Third International Conference on Massively Parallel Processing Using Optical Interconnections (IEEE Computer Society, Los Alamitos, Calif., 1996), pp. 114–121. [CrossRef]
  11. C. Wang, S. Sahni, “Basic operations on the OTIS-mesh optoelectronic computer,” IEEE Trans. Parallel Distrib. Syst. 9, 1226–1236 (1998). [CrossRef]
  12. S. Sahni, C. Wang, “BPC permutations on the OTIS-mesh optoelectronic computer,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections (IEEE Computer Society, Los Alamitos, Calif., 1997), pp. 130–135.
  13. S. Rajasekaran, S. Sahni, “Randomized routing, selection, and sorting on the OTIS-mesh,” IEEE Trans. Parallel Distrib. Syst. 9, 833–840 (1998). [CrossRef]
  14. A. Ferreira, “Towards effective models for optical passive star based lightwave networks,” in Optical Interconnections and Parallel Processing: Trends at the Interface, P. Berthomé, A. Ferreira, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 209–233.
  15. H. Bourdin, A. Ferreira, K. Marcus, “A performance comparison between graph and hypergraph topologies for passive star WDM lightwave networks,” Comput. Netw. ISDN Syst. 30, 805–819 (1998). [CrossRef]
  16. I. Chlamtac, A. Fumagalli, “Quadro-star: a high performance optical WDM star network,” IEEE Trans. Commun. 42, 2582–2591 (1994). [CrossRef]
  17. E. Hall, J. Kravitz, R. Ramaswani, M. Halvorson, S. Tenbrink, R. Thomsen, “The Rainbow-II gigabit optical network,” IEEE J. Sel. Areas Commun. 14, 814–823 (1996). [CrossRef]
  18. A. Sen, P. Maitra, “A comparative study of Shuffle-Exchange, Manhattan Street, and Supercube network for lightwave applications,” Comput. Netw. and ISDN Syst. 26, 1007–1022 (1994). [CrossRef]
  19. Z. Zhang, A. S. Acampora, “Performance analysis of multihop lightwave networks with hot potato routing and distance-age-priorities,” IEEE Trans. Commun. 42, 2571–2581 (1994). [CrossRef]
  20. D. Coudert, A. Ferreira, X. Muñoz, “Multiprocessor architectures using multihops multi-OPS lightwave networks and distributed control,” in Proceedings of the Twelfth International Parallel Processing Symposium (IEEE Computer Society, Los Alamitos, Calif., 1998), pp. 151–155.
  21. W. H. Kautz, “Bounds on directed (d, k) graphs: theory of cellular logic networks and machines,” (SRI International, Menlo Park, Calif., 1998), pp. 20–28.
  22. G. Panchapakesan, A. Sengupta, “On multihop optical network topology using Kautz digraphs,” in Proceedings of InfoCom’95 (IEEE Computer Society, Los Alamitos, Calif., 1995), pp. 675–682.
  23. G. Smit, P. Havinga, “The architecture of Rattlesnake: a real-time multimedia network,” in Network and Operating System Support for Digital Audio and Video: Third International Workshop, Vol. 712 of Lecture Notes in Computer Science (Springer-Verlag, Berlin, 1993), pp. 15–24. [CrossRef]
  24. P. Havinga, G. Smit, “Rattlesnake–a single chip high-performance ATM switch,” in Proceedings of the International Conference on Multimedia and Networking (MmNet) (IEEE Computer Society, Los Alamitos, Calif., 1995), pp. 208–217.
  25. G. Smit, P. Havinga, “Multicast and broadcast in the Rattlesnake ATM switch, in Proceedings of the International Conference on Multimedia and Networking (MmNet) (IEEE Computer Society, Los Alamitos, Calif., 1995), pp. 218–226.
  26. M. Imase, T. Soneoka, K. Okada, “A fault-tolerant processor interconnection network,” Syst. Comput. Jpn. 17, 21–30 (1986). [CrossRef]
  27. G. Smit, P. Havinga, P. Jansen, “An algorithm for generating node disjoint routes in Kautz digraphs,” in Proceedings of the International Parallel Processing Symposium (IEEE Computer Society, Los Alamitos, Calif., 1991), pp. 102–107. [CrossRef]
  28. D. Chiarulli, S. Levitan, R. Melhem, J. Teza, G. Gravenstreter, “Partitioned optical passive star (POPS) topologies for multiprocessor interconnection networks with distributed control,” IEEE J. Lightwave Technol. 14, 1601–1612 (1996). [CrossRef]
  29. P. Berthomé, A. Ferreira, “Improved embeddings in POPS networks through stack-graph models,” in Proceedings of the Third International Conference on Massively Parallel Processing Using Optical Interconnections (IEEE Computer Society, Los Alamitos, Calif., 1996), pp. 130–135. [CrossRef]
  30. C. Berge, Graphes (Bordas, Paris, 1983).
  31. M. Imase, M. Itoh, “Design to minimize diameter on building-block network,” IEEE Trans. Comput. 30, 439–442 (1981). [CrossRef]
  32. M. Imase, M. Itoh, “A design for directed graphs with minimum diameter,” IEEE Trans. Comput. 32, 782–784 (1983). [CrossRef]
  33. M. Blume, F. McCormick, P. Marchand, S. Esener, “Array interconnect systems based on lenslets and CGH,” (SPIE, Bellingham, Wash., 1995).
  34. Y. Li, T. Wang, K. Fasanella, “Inexpensive local interconnect solutions using side-coupling polymer optical fibers,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections (IEEE Computer Society, Los Alamitos, Calif., 1997), pp. 45–51.
  35. C. Berge, Hypergraphes: Combinatoire des ensembles finis (Bordas, Paris, 1987).
  36. T. Szymanski, “Hypermeshes—optical interconnection networks for parallel computing,” J. Parallel Distrib. Comput. 26, 1–23 (1996). [CrossRef]
  37. S. Zheng, “An abstract model for optical interconnection networks,” in Parallel Computing Using Optical Interconnections, K. Li, Y. Pan, S. Zheng, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1998), pp. 139–162. [CrossRef]
  38. M. A. Fiol, J. L. A. Yebra, I. Alegre, “Line digraphs iterations and the (d, k) digraph problem,” IEEE Trans. Comput. 33, 400–403 (1984). [CrossRef]
  39. J. Rumeur, Communications dans les réseaux de processeurs (Masson, Paris, 1994).
  40. S. Eitel, H-P. Gauggel, M. Brunner, R. Hovel, M. Moser, K. Gulden, “High uniformity 8 × 8 VCSEL arrays for optical interconnects,” in Proceedings of the Twenty-Fifth European Conference on Optical Communication (SEE, Paris, 1999), Vol. II, pp. 302–303.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited