OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 18 — Jun. 20, 2000
  • pp: 3001–3011

Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering

Hubert Loisel and Dariusz Stramski  »View Author Affiliations


Applied Optics, Vol. 39, Issue 18, pp. 3001-3011 (2000)
http://dx.doi.org/10.1364/AO.39.003001


View Full Text Article

Enhanced HTML    Acrobat PDF (954 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By means of radiative transfer simulations we developed a model for estimating the absorption a, the scattering b, and the backscattering b b coefficients in the upper ocean from irradiance reflectance just beneath the sea surface, R(0-), and the average attenuation coefficient for downwelling irradiance, 〈K d 1, between the surface and the first attenuation depth. The model accounts for Raman scattering by water, and it does not require any assumption about the spectral shapes of a, b, and b b . The best estimations are obtained for a and b b in the blue and green spectral regions, where errors of a few percent to <10% are expected over a broad range of chlorophyll concentration in water. The model is useful for satellite ocean color applications because the model input, R(0-) and 〈K d 1, can be retrieved from remote sensing and the model output, a and b b , is the major determinant of remote-sensing reflectance.

© 2000 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(030.5620) Coherence and statistical optics : Radiative transfer
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.5860) Scattering : Scattering, Raman

History
Original Manuscript: August 12, 1999
Revised Manuscript: February 3, 2000
Published: June 20, 2000

Citation
Hubert Loisel and Dariusz Stramski, "Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering," Appl. Opt. 39, 3001-3011 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-18-3001


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).
  2. R. Bartz, J. R. V. Zaneveld, H. Park, “A transmissometer for profiling and moored observations in water,” in Ocean Optics V, M. B. White, ed., Proc. SPIE160, 102–108 (1978). [CrossRef]
  3. H. R. Gordon, O. B. Brown, M. M. Jacobs, “Computed relations between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975). [CrossRef] [PubMed]
  4. H. R. Gordon, “Absorption and scattering estimates from irradiance measurements: Monte Carlo simulations,” Limnol. Oceanogr. 36, 769–777 (1991). [CrossRef]
  5. J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29, 350–356 (1984). [CrossRef]
  6. J. T. O. Kirk, “Estimation of the absorption and scattering coefficient of natural waters by use of underwater irradiance measurements,” Appl. Opt. 33, 3276–3278 (1994). [CrossRef] [PubMed]
  7. J. R. V. Zaneveld, R. Bartz, J. C. Kitchen, “Reflective-tube absorption meter,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 124–136 (1990). [CrossRef]
  8. C. Moore, J. R. V. Zaneveld, J. C. Kitchen, “Preliminary results from an in situ spectral absorption meter,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. SPIE1750, 330–337 (1992).
  9. R. A. Maffione, D. R. Dana, “Recent measurements of the spectral backward-scattering coefficient in coastal waters,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 154–159 (1997). [CrossRef]
  10. Neither the ac-9 nor the Hydroscat-6 instrument provides direct measurements of the absorption a the backscattering bb coefficients. The determination of a from ac-9 measurement requires a correction for scattering error that may be difficult to estimate accurately. The estimation of bb from Hydroscat-6 requires the conversion of the backscatter signal measured for the scattering angle of ∼140° into the bb value.
  11. R. W. Preisendorfer, “Application of radiative transfer theory to light measurements in the sea,” Union Geod. Geophys. Monogr. 10, 11–30 (1961).
  12. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977). [CrossRef]
  13. J. T. O. Kirk, “Estimation of the scattering coefficient of natural waters using underwater irradiance measurements,” Aust. J. Mar. Freshwater Res. 32, 533–539 (1981). [CrossRef]
  14. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on sun angles as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991). [CrossRef] [PubMed]
  15. H. R. Gordon, G. C. Boynton, “Radiance-irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: homogeneous waters,” Appl. Opt. 36, 2636–2641 (1997). [CrossRef] [PubMed]
  16. H. R. Gordon, G. C. Boynton, “Radiance-irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: vertically stratified water bodies,” Appl. Opt. 37, 3886–3896 (1998). [CrossRef]
  17. P. Y. Deschamps, F. M. Breon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Seze, “The POLDER mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sens. 32, 598–615 (1994). [CrossRef]
  18. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993). [CrossRef] [PubMed]
  19. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35, 4850–4862 (1996). [CrossRef] [PubMed]
  20. R. W. Austin, T. J. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 239–256. [CrossRef]
  21. M. Kishino, J. Ishizaka, H. Satoh, K. Kusaka, S. Saitoh, T. Miyoi, K. Kawasaki, “Optical characteristics of seawater in the North Pacific Ocean,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 173–178 (1997). [CrossRef]
  22. R. Austin, T. Petzold, “Spectral dependence of the diffuse attenuation coefficient of light in ocean waters,” Opt. Eng. 25, 471–479 (1986). [CrossRef]
  23. T. Aarup, N. Holt, N. K. Hojerslev, “Optical measurements in the North Sea–Baltic transition zone. III. Statistical analysis of bio-optical data from the Eastern North Sea, the Skagerrak and the Kattegat,” Continental Shelf Res. 16, 1355–1377 (1996). [CrossRef]
  24. H. R. Gordon, W. R. McCluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt. 14, 413–416 (1975). [CrossRef] [PubMed]
  25. J. T. O. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36, 455–467 (1991). [CrossRef]
  26. A. Morel, H. Loisel, “Apparent optical properties of oceanic water: dependence on the molecular scattering contribution,” Appl. Opt. 37, 4765–4776 (1998). [CrossRef]
  27. S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984). [CrossRef]
  28. B. R. Marshall, R. C. Smith, “Raman scattering and in-water ocean optical properties,” Appl. Opt. 29, 71–84 (1990). [CrossRef] [PubMed]
  29. J. Berwald, D. Stramski, C. D. Mobley, D. A. Kiefer, “Effect of Raman scattering on the average cosine and diffuse attenuation coefficient of irradiance in the ocean,” Limnol. Oceanogr. 43, 564–576 (1998). [CrossRef]
  30. H. R. Gordon, “Contribution of Raman scattering to water-leaving radiance: a reexamination,” Appl. Opt. 38, 3166–3174 (1999). [CrossRef]
  31. C. Cox, W. Munk, “Measurements of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954). [CrossRef]
  32. C. D. Mobley, B. Gentili, H. R. Gordon, J. Zhonghai, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing under-water light fields,” Appl. Opt. 32, 7484–7504 (1993). [CrossRef] [PubMed]
  33. T. J. Petzold, “Volume scattering functions for selected natural waters,” (Scripps Institution of Oceanography, La Jolla, Calif., 1972).
  34. C. D. Mobley, Hydrolight 4.0 User’s Guide (Sequoia Scientific, Mercer Island, Wash., 1998).
  35. F. M. Sogandares, E. S. Fry, “Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements,” Appl. Opt. 36, 8699–8709 (1997). [CrossRef]
  36. R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  37. J. S. Bartlett, K. J. Voss, S. Sathyendranath, A. Vodacek, “Raman scattering by pure water and seawater,” Appl. Opt. 37, 3324–3332 (1998). [CrossRef]
  38. D. Antoine, J. M. Andre, A. Morel, “Ocean primary production. 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll,” Global Biogeochem. Cycles 10, 57–69 (1996). [CrossRef]
  39. R. H. Stavn, A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27, 4002–4011 (1988). [CrossRef] [PubMed]
  40. K. J. Waters, “Effects of Raman scattering on the water-leaving radiance,” J. Geophys. Res. 100, 13,151–13,161 (1995). [CrossRef]
  41. H. R. Gordon, “Sensitivity of radiative transfer to small-angle scattering in the ocean: a quantitative assessment,” Appl. Opt. 32, 7505–7511 (1993). [CrossRef] [PubMed]
  42. D. Stramski, A. Bricaud, A. Morel, “A database of single-particle optical properties,” presented at the Ocean Optics XIV Conference, Kailua-Kona, Hawaii, 10–13 November 1998; Ocean Optics XIV CD ROM (Office of Naval Research, Washington, D.C., 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited