OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 18 — Jun. 20, 2000
  • pp: 3050–3052

Strain-independent temperature measurement by use of a fluorescence intensity ratio technique in optical fiber

Scott A. Wade, Stephen F. Collins, Kenneth T. V. Grattan, and Gregory W. Baxter  »View Author Affiliations


Applied Optics, Vol. 39, Issue 18, pp. 3050-3052 (2000)
http://dx.doi.org/10.1364/AO.39.003050


View Full Text Article

Enhanced HTML    Acrobat PDF (75 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The strain sensitivity of the fluorescence intensity ratio temperature-sensing technique has been measured to be (2 ± 3) × 10-4%/με in Yb3+-doped fiber, implying a temperature-to-strain cross sensitivity of (2 ± 3) × 10-4 °C/με. The near-zero strain sensitivity means that this optical-fiber sensor technique is well suited for temperature measurement in strain-affected environments.

© 2000 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.6780) Instrumentation, measurement, and metrology : Temperature
(160.5690) Materials : Rare-earth-doped materials
(300.2530) Spectroscopy : Fluorescence, laser-induced

History
Original Manuscript: September 10, 1999
Revised Manuscript: April 11, 2000
Published: June 20, 2000

Citation
Scott A. Wade, Stephen F. Collins, Kenneth T. V. Grattan, and Gregory W. Baxter, "Strain-independent temperature measurement by use of a fluorescence intensity ratio technique in optical fiber," Appl. Opt. 39, 3050-3052 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-18-3050


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, London, 1995). [CrossRef]
  2. J. D. C. Jones, “Review of fibre sensor techniques for temperature-strain discrimination,” in 12th International Conference on Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 36–39.
  3. T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, “Intrinsic strain and temperature characteristics of Yb-doped silica-based optical fibers,” Rev. Sci. Instrum. 70, 1447–1451 (1999). [CrossRef]
  4. S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998). [CrossRef]
  5. H. Berthou, C. K. Jorgensen, “Optical-fiber temperature sensor based on upconversion excited fluorescence,” Opt. Lett. 15, 1100–1102 (1990). [CrossRef] [PubMed]
  6. E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, G. W. Baxter, “Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors,” Appl. Opt. 34, 8019–8025 (1995). [CrossRef] [PubMed]
  7. E. Maurice, G. Monnom, G. W. Baxter, S. A. Wade, B. P. Petreski, S. F. Collins, “Blue light-emitting-diode-pumped point temperature sensor based on a fluorescence intensity ratio in Pr3+:ZBLAN glass,” Opt. Rev. 4, 89–91 (1997). [CrossRef]
  8. E. Maurice, S. A. Wade, S. F. Collins, G. Monnom, G. W. Baxter, “Self-referenced point temperature sensor based on a fluorescence intensity ratio in Yb3+-doped silica fiber,” Appl. Opt. 36, 8264–8269 (1997). [CrossRef]
  9. S. A. Wade, J. C. Muscat, S. F. Collins, G. W. Baxter, “Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70, 4279–4282 (1999). [CrossRef]
  10. Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997). [CrossRef]
  11. Th. Tröster, T. Gregorian, W. B. Holzapfel, “Energy levels of Nd3+ and Pr3+ in RCl3 under pressure,” Phys. Rev. B 48, 2960–2967 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited