OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 18 — Jun. 20, 2000
  • pp: 3108–3114

Effect of spatial hole burning on injection-locked vertical-cavity surface-emitting laser arrays

Tal Fishman and Amos Hardy  »View Author Affiliations


Applied Optics, Vol. 39, Issue 18, pp. 3108-3114 (2000)
http://dx.doi.org/10.1364/AO.39.003108


View Full Text Article

Acrobat PDF (126 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Injection locking of vertical-cavity surface-emitting laser arrays is analyzed at steady state, including the effect of spatial hole burning. A free-running laser array (i.e., without injection), that operates well-above threshold, can exhibit multimode oscillations. Consequently, each of the free-running modes (at different frequencies) needs a different locking injection power. For low pump levels, just above threshold, the array is single mode and, as expected, the results bear a close resemblance to those of the average gain analysis, which ignores spatial hole burning.

© 2000 Optical Society of America

OCIS Codes
(140.3290) Lasers and laser optics : Laser arrays
(140.3520) Lasers and laser optics : Lasers, injection-locked
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

History
Original Manuscript: October 26, 1999
Revised Manuscript: March 14, 2000
Published: June 20, 2000

Citation
Tal Fishman and Amos Hardy, "Effect of spatial hole burning on injection-locked vertical-cavity surface-emitting laser arrays," Appl. Opt. 39, 3108-3114 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-18-3108


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Kapon, J. Katz, A. Yariv, “Supermode analysis of phase-locked arrays of semiconductor lasers,” Opt. Lett. 10, 125–127 (1984). [CrossRef]
  2. D. Botez, D. E. Ackley, “Phase-locked arrays of semiconductor diode lasers,” IEEE Circuits Devices Mag. 2, 8–17 (1986). [CrossRef]
  3. H. Pier, E. Kapon, “Photon localization in lattices of coupled vertical-cavity surface-emitting lasers between one and two dimensionalities,” Opt. Lett. 22, 546–548 (1997). [CrossRef] [PubMed]
  4. T. Fishman, E. Kapon, H. Pier, A. Hardy, “Modal expansion analysis of strained photonic lattices based on vertical cavity surface emitting laser arrays,” Appl. Phys. Lett. 74, 3595–3597 (1999), and references therein.
  5. M. Orenstein, E. Kapon, J. P. Harbison, L. T. Florez, N. G. Stoffel, “Large two dimensional arrays of phase-locked vertical cavity surface emitting lasers,” Appl. Phys. Lett. 60, 1535–1537 (1992). [CrossRef]
  6. H.-J. Yoo, A. Scherer, J. P. Harbison, L. T. Florez, E. G. Paek, B. P. Van der Gaag, J. R. Hayes, A. V. Von Lehmen, E. Kapon, Y. S. Kwon, “Fabrication of a two-dimensional phased array of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 56, 1198–1200 (1990). [CrossRef]
  7. T. Fishman, A. Hardy, E. Kapon, “Formulations for calculating the eigenmodes of vertical cavity laser arrays,” IEEE J. Quantum Electron. 33, 1756–1762 (1997). [CrossRef]
  8. J. M. Verdiell, R. Frey, J. P. Huignard, “Analysis of injection-locked gain-guided diode laser arrays,” IEEE J. Quantum Electron. 27, 396–401 (1991). [CrossRef]
  9. J. P. Hohimer, A. Owyoung, G. R. Hadley, “Single-channel injection locking of a diode-laser array with a CW dye laser,” Appl. Phys. Lett. 47, 1244–1246 (1985). [CrossRef]
  10. S. MacCormack, J. Feinberg, M. H. Garrett, “Injection locking a laser-diode array with a phase-conjugate beam,” Opt. Lett. 19, 120–122 (1994). [CrossRef] [PubMed]
  11. L. Golberg, H. F. Taylor, J. F. Weller, “Injection locking of coupled-stripe diode laser arrays,” Appl. Phys. Lett. 46, 236–240 (1985). [CrossRef]
  12. T. Fishman, A. Hardy, E. Kapon, H. Pier, “Injection locking of shear-strain photonic lattices based on VCSEL arrays,” in Advanced Semiconductor Lasers and Their Applications, L. Hollberg, R. J. Lang, eds., Vol. 31 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000).
  13. H. Li, T. L. Lucas, J. G. McInerney, M. W. Wright, R. A. Morgan, “Injection locking dynamics of vertical cavity semiconductor lasers under conventional and phase conjugate injection,” IEEE J. Quantum Electron. 32, 227–235 (1996). [CrossRef]
  14. J. Y. Law, G. H. M. van Tartwijk, G. P. Agrawal, “Effects of transverse-mode competition on injection dynamics of vertical-cavity surface-emitting lasers,” Quantum Semiclassic. Opt. 9, 737–747 (1997). [CrossRef]
  15. T. Fishman, A. Hardy, “Injection-locking analysis of vertical-cavity laser arrays,” J. Opt. Soc. Am. B 16, 38–45 (1999). [CrossRef]
  16. G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand-Reinhold, New York, 1986).
  17. S.-S. Wang, H. G. Winful, “Propagation model for the dynamics of gain-guided semiconductor laser arrays,” J. Appl. Phys. 73, 462–464 (1993). [CrossRef]
  18. R. Lang, “Injection locking of a semiconductor laser,” IEEE J. Quantum Electron. QE-18, 976–983 (1982). [CrossRef]
  19. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  20. R. J. Ram, D. I. Babic, R. A. York, J. E. Bowers, “Spontaneous emission in microcavities with distributed mirrors,” IEEE J. Quantum Electron. 31, 399–410 (1995), and Refs. 10 and 11 therein.
  21. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).
  22. M. Shimizu, F. Koyama, K. Iga, “Transverse mode analysis for surface emitting laser using beam propagation method,” Trans. Inst. Electron. Inf. Commun. Eng. Part E 74, 3334–3340 (1991).
  23. F. B. Hildebrand, Methods of Applied Mathematics, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1965).
  24. A. G. Fox, T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited