OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 18 — Jun. 20, 2000
  • pp: 3120–3137

Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment system

Zhaoyan Liu, Peter Voelger, and Nobuo Sugimoto  »View Author Affiliations

Applied Optics, Vol. 39, Issue 18, pp. 3120-3137 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (1849 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We carried out a simulation study for the observation of clouds and aerosols with the Japanese Experimental Lidar in Space Equipment (ELISE), which is a two-wavelength backscatter lidar with three detection channels. The National Space Development Agency of Japan plans to launch the ELISE on the Mission Demonstrate Satellite 2 (MDS-2). In the simulations, the lidar return signals for the ELISE are calculated for an artificial, two-dimensional atmospheric model including different types of clouds and aerosols. The signal detection processes are simulated realistically by inclusion of various sources of noise. The lidar signals that are generated are then used as input for simulations of data analysis with inversion algorithms to investigate retrieval of the optical properties of clouds and aerosols. The results demonstrate that the ELISE can provide global data on the structures and optical properties of clouds and aerosols. We also conducted an analysis of the effects of cloud inhomogeneity on retrievals from averaged lidar profiles. We show that the effects are significant for space lidar observations of optically thick broken clouds.

© 2000 Optical Society of America

OCIS Codes
(280.3640) Remote sensing and sensors : Lidar
(290.1350) Scattering : Backscattering

Original Manuscript: August 31, 1999
Revised Manuscript: April 4, 2000
Published: June 20, 2000

Zhaoyan Liu, Peter Voelger, and Nobuo Sugimoto, "Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment system," Appl. Opt. 39, 3120-3137 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, A. D. D. Genio, M. Deque, V. Dymnikov, V. Galin, W. L. Gates, S. J. Ghan, J. T. Kiehl, A. A. Lacis, H. L. Treut, Z. X. Li, X. Z. Liang, B. J. McAvaney, V. P. Meleshko, J. F. B. Mitchell, J. J. Morcrette, D. A. Randall, L. Rikus, E. Roeckner, J. F. Royer, U. Schlese, D. A. Sheinin, A. Slingo, A. P. Sokolov, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, M. H. Zhang, “Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models,” J. Geophys. Res. 95, 16,601–16,615 (1990). [CrossRef]
  2. D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s Lidar In-space Technology Experiment,” Proc. IEEE 84, 164–179 (1996). [CrossRef]
  3. T. Imai, Y. Kawamura, N. Tanioka, K. Asai, T. Itabe, O. Uchino, T. Kobayashi, Y. Sasano, T. Aoyagi, “NASDA ELISE (MDS-lidar) program,” in Laser Radar Ranging and Atmospheric Lidar Techniques, U. Schreiber, C. Werner, eds., Proc. SPIE3218, 177–183 (1997). [CrossRef]
  4. Y. Sasano, K. Asai, N. Sugimoto, Y. Kawamura, K. Tatsumi, T. Imai, “NASDA mission demonstration satellite lidar project and its sciences,” in Optical Remote Sensing for Industry and Environmental Monitoring, H. Hu, U. N. Singh, G. Wang, eds., Proc. SPIE3504, 2–7 (1998). [CrossRef]
  5. C. M. R. Platt, “Remote sounding of high clouds. VI. Optical properties of midlatitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987). [CrossRef]
  6. A. Notari, U. N. Singh, T. D. Wilkerson, W. C. Braun, “Optical properties of high clouds,” in Optical Remote Sensing of the Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 210–212.
  7. A. Ansmann, J. Bosenberg, G. Brogniez, S. Elouragini, P. H. Flamant, K. Klapheck, H. Linne, L. Menenger, W. Michaelis, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: the 18 October 1989 case study and statistical analysis,” J. Appl. Meteorol. 32, 1608–1622 (1993). [CrossRef]
  8. D. G. Guasta, M. Morandi, L. Stefanutti, “One year of cloud lidar data from Dumont d’Urville (Antarctica). 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18,575–18,587 (1993). [CrossRef]
  9. Y. Takano, K.-N. Liou, “Solar radiative transfer in cirrus clouds. I. Single scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 818–837 (1989). [CrossRef]
  10. Y. Takano, K.-N. Liou, “Radiative transfer in cirrus clouds. III. Light scattering by irregular ice crystals,” J. Atmos. Sci. 52, 3–19 (1995). [CrossRef]
  11. R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, W. T. Grandy, “Backscatter and extinction in water clouds,” J. Geophys. Res. 88, 6787–6796 (1983). [CrossRef]
  12. V. E. Derr, “Estimation of the extinction coefficient of clouds from multiwavelength lidar backscatter measurements,” Appl. Opt. 19, 2310–2314 (1980). [CrossRef] [PubMed]
  13. L. R. Poole, M. T. Osborn, Q. H. Hunt, “Lidar observations of arctic polar stratospheric clouds, 1988: signature of small, solid particles above the frost point,” Geophys. Res. Lett. 15, 867–870 (1988). [CrossRef]
  14. E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Schoeberl, A. F. Tuck, “Airborne lidar observations in the wintertime Arctic stratosphere. 1. Polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990). [CrossRef]
  15. H. Jaeger, D. Hofmann, “Midlatitude lidar backscatter to mass, area, and extinction conversion model based on in situ aerosol measurements from 1980 to 1987,” Appl. Opt. 30, 127–138 (1991). [CrossRef]
  16. G. P. Gobbi, “Lidar estimation of stratospheric aerosol properties: surface, volume, and extinction to backscatter ratio,” J. Geophys. Res. 100, 11,219–11,235 (1995). [CrossRef]
  17. K. Parameswaran, K. O. Rose, B. V. K. Murthy, “Relationship between backscattering and extinction coefficients of aerosols with application to turbid atmosphere,” Appl. Opt. 30, 3059–3071 (1991). [CrossRef] [PubMed]
  18. Y. Sasano, E. V. Browell, “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations,” Appl. Opt. 28, 1670–1679 (1989). [CrossRef] [PubMed]
  19. M. Hess, P. Koepke, I. Schult, “Optical Properties of Aerosols and Clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998). [CrossRef]
  20. T. Nakajima, M. Tanaka, M. Yamano, M. Shiobara, K. Arao, Y. Nakanishi, “Aerosol optical characteristics in the yellow sand events observed in May 1982 at Nagasaki. II. Models,” J. Meteorol. Soc. Jpn. 67, 279–291 (1989).
  21. P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photo-diodes,” RCA Rev. 35, 234–278 (1974).
  22. P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Orbiting lidar simulations. 1. Aerosol and cloud measurements by an independent-wavelength technique,” Appl. Opt. 21, 1541–1553 (1982). [CrossRef] [PubMed]
  23. L. Elterman, “UV, visible, and IR attenuation for altitudes to 50 km, 1968,” Environ. Res. Papers 285 (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1968).
  24. K. Sassen, B. S. Cho, “Subvisual-thin cirrus lidar dataset for satellite verification and climatological research,” J. Appl. Meteorol. 31, 1275–1285 (1972). [CrossRef]
  25. S. R. Pal, W. Steinbrecht, A. I. Carswell, “Automated method for lidar determination of cloud base height and vertical extent,” Appl. Opt. 31, 1488–1494 (1992). [CrossRef] [PubMed]
  26. C. M. R. Platt, S. A. Young, A. I. Carswell, S. R. Pal, M. P. McCormick, D. Winker, M. D. Guasta, L. Stefanutti, W. L. Eberhard, R. M. Hardesty, P. H. Flamant, R. Valentin, B. Forgan, G. G. Gimmestad, H. Jager, S. S. Khmelevtsov, I. Kolev, B. Kaprielov, D.-R. Lu, K. Sassen, V. S. Shamanaev, O. Uchino, Y. Mizuno, U. Wandinger, C. Weitkamp, A. Ansmann, C. Wooldridge, “The Experimental Cloud Lidar Pilot Study (ECLIPS) for cloud-radiation research,” Bull. Am. Meteorol. Soc. 75, 1634–1654 (1994). [CrossRef]
  27. J. M. Pelon, M. Desbois, P. H. Flamant, H. L. Treut, G. Seze, M. Doutriaux, V. Trouillet, P. Chazette, S. Elouragini, C. Flamant, F. Lieutaud, J.-L. Raffaelli, R. Valentin, “A study of the potential contribution of a backscatter lidar to climatological studies,” (European Space Research and Technology Center, Noordwijk, The Netherlands, 1996).
  28. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984). [CrossRef] [PubMed]
  29. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1984). [CrossRef]
  30. S. A. Young, “Analysis of lidar backscatter profiles in optically thin clouds,” Appl. Opt. 34, 7019–7031 (1995). [CrossRef] [PubMed]
  31. Z. Liu, N. Sugimoto, “Theoretical and experimental study of inversion algorithms for space lidar observation of clouds and aerosols,” in Atmospheric Propagation, Adaptive Systems, and Lidar Techniques for Remote Sensing II, A. D. Devir, A. Kohle, U. Schreiber, C. Werner, eds., Proc. SPIE3494, 296–305 (1998). [CrossRef]
  32. B. A. Wielicki, L. Parker, “On the determination of cloud cover from satellite sensors: the effect of sensor spatial resolution,” J. Geophys. Res. 97, 12,799–12,823 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited