OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 18 — Jun. 20, 2000
  • pp: 3154–3164

Doppler-free nonlinear absorption in ethylene by use of continuous-wave cavity ringdown spectroscopy

Christine R. Bucher, Kevin K. Lehmann, David F. Plusquellic, and Gerald T. Fraser  »View Author Affiliations


Applied Optics, Vol. 39, Issue 18, pp. 3154-3164 (2000)
http://dx.doi.org/10.1364/AO.39.003154


View Full Text Article

Enhanced HTML    Acrobat PDF (147 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report what we believe to be the first systematic study of Doppler-free, nonlinear absorption by use of cavity ringdown spectroscopy. We have developed a variant of cavity ringdown spectroscopy for the mid-infrared region between 9 and 11 µm, exploiting the intracavity power buildup that is possible with continuous-wave lasers. The infrared source consists of a continuous-wave CO2 laser with 1-mW tunable infrared sidebands that couple into a high-finesse stable resonator. We tune the sideband frequencies to observe a saturated, Doppler-free Lamb dip in the ν7, 111,10 ← 112,10 rovibrational transition of ethylene (C2H4). Power studies of the Lamb dip are presented to examine the intracavity effects of saturation on the Lamb-dip linewidth, the peak depth, and the broadband absorption.

© 2000 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(300.6190) Spectroscopy : Spectrometers
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6420) Spectroscopy : Spectroscopy, nonlinear
(300.6460) Spectroscopy : Spectroscopy, saturation

History
Original Manuscript: July 2, 1999
Revised Manuscript: December 22, 1999
Published: June 20, 2000

Citation
Christine R. Bucher, Kevin K. Lehmann, David F. Plusquellic, and Gerald T. Fraser, "Doppler-free nonlinear absorption in ethylene by use of continuous-wave cavity ringdown spectroscopy," Appl. Opt. 39, 3154-3164 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-18-3154


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996). [CrossRef]
  2. J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,288 (1996). [CrossRef]
  3. P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995). [CrossRef]
  4. J. P. Looney, J. T. Hodges, R. D. van Zee, “Quantitative absorption measurements using cavity-ringdown spectroscopy with pulsed lasers,” in Cavity-Ringdown Spectroscopy: an Ultratrace-Absorption Measurement Technique, K. A. Busch, M. A. Busch, eds. (Oxford University Press, Oxford, UK, 1998), Chap. 7.
  5. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988). [CrossRef]
  6. K. J. Schulz, W. R. Simpson, “Frequency-matched cavity ring-down spectroscopy,” Chem. Phys. Lett. 297, 523–529 (1998). [CrossRef]
  7. Y. He, M. Hippler, M. Quack, “High-resolution cavity ring-down absorption spectroscopy of nitrous oxide and chloroform using a near-infrared cw diode laser,” Chem. Phys. Lett. 289, 527–534 (1998). [CrossRef]
  8. R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998). [CrossRef]
  9. D. Romanini, J. Gambogi, K. K. Lehmann, “Cavity ring down spectroscopy with cw diode laser excitation,” in Proceedings of the 50th International Symposium on Molecular Spectroscopy, T. A. Miller, ed. (Department of Chemistry, Ohio State University, Columbus, Ohio, 1995), p. 284.
  10. D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997). [CrossRef]
  11. R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996). [CrossRef]
  12. D. Romanini, A. A. Kachanov, F. Stoeckel, “Cavity ringdown spectroscopy: broad band absolute absorption measurements,” Chem. Phys. Lett. 270, 546–550 (1997). [CrossRef]
  13. B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998). [CrossRef]
  14. D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997). [CrossRef]
  15. D. Romanini, P. Dupre, R. Jost, “Non-linear effects by cw cavity ring-down spectroscopy in jet-cooled NO2,” Vib. Spectrosc. 19, 93–106 (1999). [CrossRef]
  16. J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, A. O’Keefe, “Infrared Cavity Ringdown Laser-Absorption Spectroscopy (IR-CRLAS),” Chem. Phys. Lett. 245, 273–280 (1995). [CrossRef]
  17. R. Engeln, E. van den Berg, G. Meijer, L. Lin, G. M. H. Knippels, A. F. G. van der Meer, “Cavity ring down spectroscopy with a free-electron laser,” Chem. Phys. Lett. 269, 293–297 (1997). [CrossRef]
  18. E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4–10 (1999). [CrossRef]
  19. M. Muertz, B. Frech, W. Urban, “High-resolution cavity leak-out absorption spectroscopy in the 10 mm region,” Appl. Phys. B 69, 243–249 (1999).
  20. G. Magerl, W. Schupita, E. Bonek, “A tunable CO2 laser sideband spectrometer,” IEEE J. Quantum Electron. QE-18, 1214–1219 (1982). [CrossRef]
  21. SPST p-i-n Diode Switch, Series SW-2184-1A, American Microwave Corporation, 7311G Grove Rd., Frederick, Md. 21701.
  22. II-VI, Inc., 375 Saxonburg Blvd., Saxonburg, Pa. 16056.
  23. K. M. Evenson, C. C. Chou, B. W. Bach, K. G. Bach, “New cw CO2 laser lines: the 9-µm hot band,” IEEE J. Quantum Electron. 30, 1187–1188 (1994). [CrossRef]
  24. E. Riedle, S. H. Ashworth, J. T. Farrell, D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994). [CrossRef]
  25. R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ring-down spectroscopy,” Appl. Opt. 38, 3951–3960 (1999). [CrossRef]
  26. D. C. Reuter, J. M. Sirota, “Absolute intensities and foreign gas broadening coefficients of the 111,10 ← 112,10 and 180,18 ← 181,18 lines in the ν7 band of C2H4,” J. Quant. Spectrosc. Radiat. Transfer 50, 477–482 (1993). [CrossRef]
  27. E. Giacobino, M. Devaud, F. Biraben, G. Grynberg, “Doppler-free two-photon dispersion and optical bistability in rubidium vapor,” Phys. Rev. Lett. 45, 434–437 (1980). [CrossRef]
  28. F. T. Arecchi, A. Politi, “Optical bistability in a resonant two-photon absorber,” Lett. Nuovo Cimento 23, 65–69 (1978). [CrossRef]
  29. A. T. Rosenberger, L. A. Orozco, H. J. Kimble, P. D. Drummond, “Absorptive optical bistability in two-state atoms,” Phys. Rev. A 43, 6284–6302 (1991). [CrossRef] [PubMed]
  30. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 24.
  31. V. S. Letokhov, V. P. Chebotayev, Nonlinear Laser Spectroscopy (Springer-Verlag, New York, 1977), p. 57.
  32. W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation, 2nd ed. (Springer-Verlag, New York, 1996), p. 443.
  33. C. J. Borde, J. L. Hall, C. V. Kunasz, D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by perturbation approach,” Phys. Rev. A 14, 236–244 (1976). [CrossRef]
  34. V. S. Letokhov, High-Resolution Laser Spectroscopy, K. Shimoda, ed. (Springer-Verlag, New York, 1976), p. 99.
  35. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, S.-N.G. Chu, A. Y. Cho, “High power mid-infrared quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680–3682 (1996). [CrossRef]
  36. R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu, S. S. Pei, “High power mid-infrared interband cascade lasers based on type-II quantum wells,” Appl. Phys. Lett. 71, 3400–3402 (1997). [CrossRef]
  37. R. Nubling, Laser Power Optics, Inc., San Diego, Calif. (personal communication, 1999).
  38. M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited