OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 19 — Jul. 1, 2000
  • pp: 3197–3201

Multiple-Beam Interferometric Determination of Poisson’s Ratio and Strain Distribution Profiles Along the Cross Section of Bent Single-Mode Optical Fibers

Fouad El-Diasty  »View Author Affiliations


Applied Optics, Vol. 39, Issue 19, pp. 3197-3201 (2000)
http://dx.doi.org/10.1364/AO.39.003197


View Full Text Article

Acrobat PDF (213 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multiple-beam Fizeau fringes crossing bent single-mode optical fibers immersed in matching liquid reveal the existence of induced birefringence. Changes in the fiber cladding refractive index δ<i>n</i> were measured from the fringe shift to an accuracy of ∓1 × 10<sup>−4</sup>. Mathematical expressions were deduced to evaluate Poisson’s ratio and to describe the radial strain distribution profiles of bent optical fibers from the experimental values of the fringe shifts. Experimental results were obtained from microinterferograms. Studying bent fibers by application of Fizeau fringes interferometry provides a nondestructive, accurate, sensitive, and reliable method to measure their parameters and characteristics.

© 2000 Optical Society of America

OCIS Codes
(000.2190) General : Experimental physics
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2400) Fiber optics and optical communications : Fiber properties
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry

Citation
Fouad El-Diasty, "Multiple-Beam Interferometric Determination of Poisson’s Ratio and Strain Distribution Profiles Along the Cross Section of Bent Single-Mode Optical Fibers," Appl. Opt. 39, 3197-3201 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-19-3197


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Dde, Fiber Optic Sensors: An Introduction for Scientists and Engineers, 1st ed. (Wiley, New York, 1991).
  2. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
  3. G. Meltz, W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1997).
  4. K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written grating,” Electron. Lett. 26, 1270–1272 (1990).
  5. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
  6. R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29, 154–156 (1993).
  7. R. Yun-Jiang, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
  8. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
  9. S. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. LT-1, 312–331 (1983).
  10. W. B. Gardner, “Microbending loss in optical fibers,” Bell Syst. Tech. J. 54, 457–465 (1975).
  11. D. B. Keck, “Observation of externally controlled mode coupling in optical waveguides,” Proc. IEEE 62, 649–650 (1974).
  12. W. A. Gambling, D. N. Payne, and H. Matsumura, “Mode conversion coefficients in optical fibers,” Appl. Opt. 14, 1538–1542 (1975).
  13. K. Nagano, S. Kawakami, and S. Nishida, “Change of the refractive index in an optical fiber due to external forces,” Appl. Opt. 17, 2080–2084 (1978).
  14. H. F. Taylor, “Bending effects in optical fibers,” J. Lightwave Technol. LT-2, 617–622 (1984).
  15. J. Sakai and T. Kimura, “Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations,” IEEE J. Quantum Electron. QE-17, 1041–1051 (1981).
  16. A. M. Smith, “Birefringence induced by bends and twists in single-mode optical fiber,” Appl. Opt. 19, 2606–2611 (1980).
  17. D. R. Roberts, E. Cuellar, J. E. Ritter, and T. H. Service, “Design requirements for optical fibres in small radii bends,” J. Mater. Sci. 26, 3197–3201 (1991).
  18. M. J. Matthewson and C. R. Kurkjian, “Static fatigue of optical fibers in bending,” J. Am. Ceram. Soc. 70, 662–668 (1987).
  19. R. Ulrich, S. C. Rashleigh, and W. Eichoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5, 273–275 (1980).
  20. A. W. Snyder, I. White, and D. J. Mitchell, “Radiation from bent optical waveguides,” Electron. Lett. 11, 332–333 (1975).
  21. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66, 216–220 (1976).
  22. D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am. 66, 311–320 (1976).
  23. J. Sakai, “Simplified bending loss formula for single-mode optical fibers,” Appl. Opt. 18, 951–952 (1979).
  24. M. J. Matthewson, C. R. Kurkjian, and S. T. Gulati, “Strength measurement of optical fibers by bending,” J. Am. Ceram. Soc. 69, 815–821 (1986).
  25. Q. Zhang, D. A. Brown, L. J. Reinhart, and T. F. Morse, “Linearly and nonlinearly chirped Bragg gratings fabricated on curved fibers,” Opt. Lett. 20, 1122–1124 (1995).
  26. B. H. Lee and J. Nishii, “Bending sensitivity of in-series long-period fiber gratings,” Opt. Lett. 23, 1624–1628 (1998).
  27. F. M. Haran, J. K. Rew, and P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, 1163–1166 (1998).
  28. H. Gerbel and J. Herskowitz, “Effect of strain in periodically deformed single-mode optical fibers,” Appl. Opt. 26, 2155–2158 (1987).
  29. K. Jurgensen, “Dispersion minimum of monomode fibers,” Appl. Opt. 18, 1259–1261 (1979).
  30. C. T. Chang, “Minimum dispersion in single-mode step-index optical fiber,” Appl. Opt. 18, 2516–2522 (1979).
  31. N. Barakat, A. A. Hamza, and A. S. Goneid, “Multiple-beam interference fringes applied to GRIN optical waveguides to determine fiber characteristics,” Appl. Opt. 24, 4383–4386 (1985).
  32. H. A. El-Hennawi, M. Medhat, and F. El-Diasty, “On the determination of the index profile parameters of a graded index fiber,” Egypt J. Phys. 18, 179–189 (1987).
  33. H. A. El-Hennawi, F. El-Diasty, and O. Meshrif, “Interferometric determination of the refractive index of optical fiber cladding and an examination of its homogeneity,” J. Appl. Phys. 62, 4931–4933 (1987).
  34. N. Barakat, H. A. El-Hennawi, and F. El-Diasty, “Multiple-beam interference fringes applied to GRAIN optical fiber,” Appl. Opt. 27, 5090–5094 (1988).
  35. N. Barakat, H. A. El-Hennawi, and H. E. Sobeah, “Multiple-beam interferomatric studies on optical fibers,” Pure Appl. Opt. 2, 419–428 (1993).
  36. F. El-Diasty, “Interferometric determination of induced birefringence due to bending in single-mode optical fibres,” J. Opt. A: Pure Appl. Opt. 1, 197–200 (1999).
  37. J. F. Nye, Physical Properties of Crystals, 2nd ed. (Clarendon, Oxford, UK, 1964), p. 243.
  38. D. A. Pinnow, “Electrooptic materials,” in Handbook of Lasers, R. J. Presley, ed. (CRC, Cleveland, Ohio, 1971).
  39. A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
  40. W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959).
  41. X. Fang and Z. Lin, “Birefringence in curved single-mode optical fibers due to waveguide geometry effect-perturbation analysis,” J. Lightwave Technol. LT-3, 789–794 (1985).
  42. R. Urlich and M. Johnson, “Fiber-ring interferometer: polarization analysis,” Opt. Lett. 4, 152–154 (1979).
  43. R. A. Steinberg and T. G. Giallorenzi, “Performance limitation imposed on optical waveguide switches and modulator by polarization,” Appl. Opt. 15, 2440–2453 (1976).
  44. T. Okoshi, “Heterodyne-type optical fiber communications,” in Proceedings of the International Conference on Integrated Optics and Optical Fiber Communication (N.p., 1981), pp. 17–29.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited