OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 19 — Jul. 1, 2000
  • pp: 3361–3371

Beam-profile modulation of thulium laser radiation applied with multimode fibers and its effect on the threshold fluence to vaporize water

Ralf Brinkmann and Christoph Hansen  »View Author Affiliations


Applied Optics, Vol. 39, Issue 19, pp. 3361-3371 (2000)
http://dx.doi.org/10.1364/AO.39.003361


View Full Text Article

Acrobat PDF (1614 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The threshold fluences at which vaporization is initiated at the tip of a multimode fiber that is submerged in water were investigated when free-running and Q-switched thulium laser pulses (λ = 2.01 µm) were applied with different pulse energies. We focused on the quantification of temporal and spatial fluence modulations of the beam profile at the tip of a 400-µm fiber. The spatial and the temporal fluence peaks over the average fluence were measured to as high as 1.5 and 4 in the Q-switched mode, respectively, and 2.5 and 40 in the free-running mode, respectively. The fluence peaks significantly influence the vaporization process. An increase in the threshold fluence with increasing pulse energy was found for the Q-switched mode, but there was a decrease for the free-running mode. Pressure transients of the order of 1 kbar and temperatures higher than 200 °C were calculated for a 30-mJ Q-switched laser pulse at the onset of vaporization. Collecting all the data allowed us to trace the thermodynamic path of rapid heating and vaporization in a phase diagram of water.

© 2000 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(030.6140) Coherence and statistical optics : Speckle
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.6810) Lasers and laser optics : Thermal effects
(170.1020) Medical optics and biotechnology : Ablation of tissue

History
Original Manuscript: September 27, 1999
Revised Manuscript: March 28, 2000
Published: July 1, 2000

Citation
Ralf Brinkmann and Christoph Hansen, "Beam-profile modulation of thulium laser radiation applied with multimode fibers and its effect on the threshold fluence to vaporize water," Appl. Opt. 39, 3361-3371 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-19-3361


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. G. v. Leeuwen, M. J. v. d. Veen, R. M. Verdaasdonk, C. Borst, “Noncontact tissue ablation by holmium:YSSG laser pulses in blood,” Lasers Surg. Med. 11, 26–34 (1991). [CrossRef]
  2. E. D. Jansen, T. H. Le, A. J. Welch, “Excimer, Ho:YAG, and Q-switched Ho:YAG ablation of aorta: a comparison of temperatures and tissue damage in vitro,” Appl. Opt. 32, 526–534 (1993). [CrossRef] [PubMed]
  3. R. Brinkmann, A. Knipper, G. Dröge, F. Schröer, B. Gromoll, R. Birngruber, “Fundamental studies of fiber-guided soft tissue cutting by means of pulsed midinfrared lasers and their application in ureterotomy,” J. Biomed. Opt. 3, 85–95 (1998). [CrossRef] [PubMed]
  4. T. G. Barton, H. J. Foth, M. Christ, K. Hörmann, “Interaction of holmium laser radiation and cortical bone: ablation and thermal damage in a turpid medium,” Appl. Opt. 36, 32–43 (1997). [CrossRef] [PubMed]
  5. K. Haase, A. Baumbach, M. Wehrmann, S. Duda, G. Cerullo, B. Rückle, E. Steiger, K. R. Karsch, “Potential use of holmium lasers for angioplasty: evaluation of a new solid-state laser for ablation of atherosclerotic plaque,” Lasers Surg. Med. 11, 232–237 (1991). [CrossRef] [PubMed]
  6. M. Buchelt, B. Schlangmann, S. Schmolke, W. Siebert, “High-power Ho:YAG laser ablation of intervertebral discs: effects on ablation rates and temperature profile,” Lasers Surg. Med. 16, 179–183 (1995). [CrossRef]
  7. R. Brinkmann, G. Dröge, F. Schröer, M. Scheu, R. Birngruber, “Ablation dynamics in laser sclerostomy ab externo by means of pulsed lasers in the mid-infrared spectral range,” Ophthal. Surg. Lasers 28, 853–865 (1997).
  8. R. Brinkmann, D. Theisen, T. Brendel, R. Birngruber, “Single-pulse 30-J holmium laser for myocardial revascularization—a study on ablation dynamics in comparison to CO2 laser–TMR,” IEEE Select. Top. Quantum Electron. 5, 969–980 (1999). [CrossRef]
  9. C. J. Lee, G. Han, N. P. Barnes, “Ho:Tm lasers II: experiments,” IEEE J. Quantum Electron. 32, 104–111 (1996). [CrossRef]
  10. R. Brinkmann, C. Hansen, “The analysis of cavitation bubble dynamics by optical on-line monitoring,” in Laser–Tissue Interaction, Tissue Optics, and Laser Welding III, G. P. Delacrétaz, G. Godlewski, R. Pini, R. W. Steiner, L. O. Svaasand, eds., Proc. SPIE3195, 273–279 (1998).
  11. E. D. Jansen, T. G. v. Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Partial vaporization model for pulsed mid-infrared laser ablation of water,” J. Appl. Phys. 77, 1–8 (1995).
  12. M. Frenz, F. Könz, H. Pratisto, H. P. Weber, A. S. Silenok, V. I. Konov, “Starting mechanisms and dynamics of bubble formation induced by a Ho:Yttrium aluminum garnet laser in water,” J. Appl. Phys. 84, 5905–5912 (1998). [CrossRef]
  13. E. D. Jansen, T. Asshauer, M. Frenz, M. Motamedi, G. Delacrétaz, A. J. Welch, “Effect of pulse duration on bubble formation and laser-induced pressure waves during holmium laser ablation,” Lasers Surg. Med. 18, 278–293 (1996). [CrossRef] [PubMed]
  14. T. G. v. Leeuwen, L. v. Erven, J. H. Meertens, M. Motamedi, M. J. Post, C. Borst, “Origin of arterial wall dissections induced by pulsed excimer and mid-infrared laser ablation in the pig,” J. Am. Coll. Cardiol. 19, 1610–1618 (1992). [CrossRef]
  15. R. Brinkmann, C. Hansen, D. Mohrenstecher, M. Scheu, R. Birngruber, “Analysis of cavitation dynamics during pulsed laser tissue ablation by optical on-line monitoring,” IEEE J. Select. Top. Quantum Electron. 2, 826–835 (1996). [CrossRef]
  16. T. v. Leeuwen, E. D. Jansen, M. Motamedi, A. J. Welch, C. Borst, “Excimer laser ablation of soft tissue: a study of the content of rapidly expanding and collapsing bubbles,” IEEE J. Quantum Electron. 30, 1339–1345 (1994). [CrossRef]
  17. C. Hansen, R. Brinkmann, R. Birngruber, “Influence of pulse width and speckle formation on the ablation threshold in water by means of pulsed mid-IR laser radiation,” in Laser–Tissue Interaction, Tissue Optics, and Laser Welding III, G. P. Delacrétaz, G. Godlewski, R. Pini, R. W. Steiner, L. O. Svaasand, eds., Proc. SPIE3195, 197–202 (1998).
  18. F. Könz, M. Frenz, H. Pratisto, H. P. Weber, A. S. Silenok, V. I. Konov, “Starting mechanisms of bubble formation induced by Ho:Tm:YAG laser in water,” in Laser–Tissue Interaction and Tissue Optics, G. P. Delacrétaz, R. W. Steiner, L. O. Svaasand, H. J. Albrecht, T. H. Meier, eds., Proc. SPIE2624, 67–71 (1996).
  19. I. Thormählen, J. Straub, U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985). [CrossRef]
  20. E. D. Jansen, T. G. v. Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for midinfrared laser radiation,” Lasers Surg. Med. 14, 258–268 (1994). [CrossRef] [PubMed]
  21. R. H. Cole, Underwater Explosions (Princeton University Press, Princeton, N.J., 1948).
  22. G. Paltauf, M. Frenz, H. Schmidt-Kloiber, “Laser-induced microbubble formation at a fiber tip in absorbing media: experiments and theory,” in Laser–Tissue Interaction and Tissue Optics, G. P. Delacrétaz, R. W. Steiner, L. O. Svaasand, H. J. Albrecht, T. H. Meier, eds., Proc. SPIE2624, 72–82 (1996).
  23. D. Lutzke, Lichtwellenleitertechnik (Pflaum Verlag, München, Germany, 1986).
  24. S. L. Jacques, “Laser–tissue interactions. Photochemical, photothermal, and photomechanical,” Surg. Clin. North Am. 72, 531–558 (1992). [PubMed]
  25. H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon, Oxford, UK, 1959).
  26. M. Frenz, H. Pratisto, F. Könz, E. D. Jansen, A. J. Welch, H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12-µm and 2.79-µm on the ablation of tissue,” IEEE J. Quantum Electron. 32, 2025–2036 (1996). [CrossRef]
  27. T. Asshauer, G. Delacrétaz, E. Jansen, A. J. Welch, M. Frenz, “Acoustic transients in pulsed holmium laser ablation: effects of pulse duration,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacrétaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 117–129 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited