OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 19 — Jul. 1, 2000
  • pp: 3396–3407

Measurement of localized heating in the focus of an optical trap

Peter M. Celliers and Jérôme Conia  »View Author Affiliations


Applied Optics, Vol. 39, Issue 19, pp. 3396-3407 (2000)
http://dx.doi.org/10.1364/AO.39.003396


View Full Text Article

Enhanced HTML    Acrobat PDF (566 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Localized heating in the focus of an optical trap operating in water can result in a temperature rise of several kelvins. We present spatially resolved measurements of the refractive-index distribution induced by the localized heating produced in an optical trap and infer the temperature distribution. We have determined a peak temperature rise in water of 4 K in the focus of a 985-nm-wavelength 55-mW laser beam. The localized heating is directly proportional to power and the absorption coefficient. The temperature distribution is in excellent agreement with a model based on the heat equation.

© 2000 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation

History
Original Manuscript: December 13, 1999
Revised Manuscript: March 20, 2000
Published: July 1, 2000

Citation
Peter M. Celliers and Jérôme Conia, "Measurement of localized heating in the focus of an optical trap," Appl. Opt. 39, 3396-3407 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-19-3396


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  2. A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987). [CrossRef] [PubMed]
  3. S. M. Block, “Making light work with optical tweezers,” Nature 360, 493–495 (1992). [CrossRef] [PubMed]
  4. J. Conia, B. S. Edwards, S. Voelkel, “The micro-robotic laboratory: optical trapping and scissing for the biologist,” J. Clin. Lab. Anal. 11, 28–38 (1997). [CrossRef] [PubMed]
  5. S. C. Kuo, M. P. Sheetz, “Optical tweezers in cell biology,” Trends Cell Biol. 2, 116–118 (1992). [CrossRef] [PubMed]
  6. W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990). [CrossRef]
  7. C. F. Chapman, Y. Liu, G. J. Sonek, B. J. Tromberg, “The use of exogenous fluorescent probes for temperature measurements in single living cells,” Photochem. Photobiol. 62, 416–425 (1995). [CrossRef] [PubMed]
  8. Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, B. J. Tromberg, “A microfluorometric technique for the determination of localized heating in organic particles,” Appl. Phys. Lett. 65, 919–921 (1994). [CrossRef]
  9. Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68, 2137–2144 (1995). [CrossRef] [PubMed]
  10. S. C. Kuo, “A simple assay for local heating by optical tweezers,” Methods Cell Biol. 55, 43–45 (1998). [CrossRef]
  11. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1980), p. 312.
  12. W. Lochte-Holtgreven, “Evaluation of plasma parameters,” in Plasma Diagnostics, W. Lochte-Holtgreven, ed. (North-Holland, Amsterdam, 1968), p. 184.
  13. W. R. Wing, R. V. Neidigh, “A rapid Abel inversion,” Am. J. Phys. 39, 760–764 (1971). [CrossRef]
  14. I. Thormählen, J. Straub, U. Grigul, “Refractive index of water and its dependence on wavelength, temperature and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985). [CrossRef]
  15. D. R. Lide, ed., Handbook of Chemistry and Physics, 77th ed. (CRC Press, Boca Raton, Fla., 1996), p. 6–10.
  16. A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975), Chap. 6.
  17. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]
  18. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, 1986), Chap. 17.
  19. J. P. Christiansen, D. E. T. F. Ashby, K. V. Roberts, “MEDUSA, a one-dimensional laser fusion code,” Comput. Phys. Commun. 7, 271–287 (1974). [CrossRef]
  20. Numerical solution of the heat equation in two dimensions was carried out by use of an alternating-direction-implicit numerical scheme (see Ref. 18) consisting of alternating one-dimensional passes along the z coordinate (planar geometry) and the ρ coordinate (cylindrical geometry). Each pass was solved implicitly with a Crank–Nicholson scheme (see Refs. 18 and 19). Details of Crank–Nicholson differencing schemes for one-dimensional planar, cylindrical, and spherical geometry can be found, for example, in Ref. 19.
  21. H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70, 1529–1533 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited