OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 2 — Jan. 10, 2000
  • pp: 212–230

Optical BEAMTAP beam-forming and jammer-nulling system for broadband phased-array antennas

Gregory Kriehn, Andrew Kiruluta, Paulo E. X. Silveira, Sam Weaver, Shawn Kraut, Kelvin Wagner, R. Ted Weverka, and Lloyd Griffiths  »View Author Affiliations


Applied Optics, Vol. 39, Issue 2, pp. 212-230 (2000)
http://dx.doi.org/10.1364/AO.39.000212


View Full Text Article

Enhanced HTML    Acrobat PDF (1684 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an approach to receive-mode broadband beam forming and jammer nulling for large adaptive antenna arrays as well as its efficient and compact optical implementation. This broadband efficient adaptive method for true-time-delay array processing (BEAMTAP) algorithm decreases the number of tapped delay lines required for processing an N-element phased-array antenna from N to only 2, producing an enormous savings in delay-line hardware (especially for large broadband arrays) while still providing the full NM degrees of freedom of a conventional N-element time-delay-and-sum beam former that requires N tapped delay lines with M taps each. This allows the system to adapt fully and optimally to an arbitrarily complex spatiotemporal signal environment that can contain broadband signals of interest, as well as interference sources and narrow-band and broadband jammers—all of which can arrive from arbitrary angles onto an arbitrarily shaped array—thus enabling a variety of applications in radar, sonar, and communication. This algorithm is an excellent match with the capabilities of radio frequency (rf) photonic systems, as it uses a coherent optically modulated fiber-optic feed network, gratings in a photorefractive crystal as adaptive weights, a traveling-wave detector for generating time delay, and an acousto-optic device to control weight adaptation. Because the number of available adaptive coefficients in a photorefractive crystal is as large as 109, these photonic systems can adaptively control arbitrarily large one- or two-dimensional antenna arrays that are well beyond the capabilities of conventional rf and real-time digital signal processing techniques or alternative photonic techniques.

© 2000 Optical Society of America

OCIS Codes
(070.1060) Fourier optics and signal processing : Acousto-optical signal processing
(190.5330) Nonlinear optics : Photorefractive optics

History
Original Manuscript: May 24, 1999
Revised Manuscript: October 29, 1999
Published: January 10, 2000

Citation
Gregory Kriehn, Andrew Kiruluta, Paulo E. X. Silveira, Sam Weaver, Shawn Kraut, Kelvin Wagner, R. Ted Weverka, and Lloyd Griffiths, "Optical BEAMTAP beam-forming and jammer-nulling system for broadband phased-array antennas," Appl. Opt. 39, 212-230 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-2-212


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Psaltis, J. Hong, “Adaptive acoustooptic filter,” Appl. Opt. 23, 3475–3481 (1984). [CrossRef] [PubMed]
  2. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9, 1124–1131 (1991). [CrossRef]
  3. R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photonics Technol. Lett. 5, 1347–1349 (1993). [CrossRef]
  4. P. J. Matthews, M. Y. Frankel, R. D. Esman, “A wide-band fiber-optic true-time-steered array receiver capable of multiple independent simultaneous beams,” IEEE Photonics Technol. Lett. 10, 722–724 (1998). [CrossRef]
  5. D. Casasent, “Optical processing for adaptive phased-array radar,” IEE Proc. F. 127, 278–284 (1980).
  6. D. Voskresenskii, A. Grinev, E. Voronin, Electrooptical Arrays (Springer-Verlag, Berlin, 1989). [CrossRef]
  7. D. Psaltis, J. Hong, “Adaptive acoustooptic processor,” in Analog Optical Processing and Computing, H. J. Caulfield, ed., Proc. SPIE519, 62–68 (1984). [CrossRef]
  8. S.-C. Lin, J. Hong, R. Boughton, D. Psaltis, “Broadband beamforming via acousto-optics,” in Advances in Optical Information Processing III, D. R. Pape, ed., Proc. SPIE936, 152–162 (1988). [CrossRef]
  9. J. H. Hong, “Broadband phased array beamforming,” in Optical Technology for Microwave Applications IV, S.-K. Yao, ed., Proc. SPIE1102, 134–141 (1989). [CrossRef]
  10. W. A. Penn, R. Wasiewicz, R. Iodice, “Optical adaptive multipath canceller for surveillance radar,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, eds., Proc. SPIE1217, 151–160 (1990). [CrossRef]
  11. R. M. Montgomery, “Acousto-optic/photorefractive processor for adaptive antenna arrays,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, eds., Proc. SPIE1217, 207–217 (1990). [CrossRef]
  12. D. R. Pape, “Multichannel Bragg cells: design, performance, and applications,” Opt. Eng. 31, 2148–2158 (1992). [CrossRef]
  13. J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H.-W. Yen, G. L. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982 (1995). [CrossRef]
  14. A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992). [CrossRef]
  15. R. Soref, “Optical dispersion technique for time-delay beam steering,” Appl. Opt. 31, 7395–7397 (1992). [CrossRef] [PubMed]
  16. L. J. Lembo, T. Holcomb, M. Wickham, P. Wisseman, J. C. Brock, “Low-loss fiber optic time-delay element for phased-array antennas,” in Optoelectronic Signal Processing for Phased-Array Antennas IV, B. M. Hendrickson, ed., Proc. SPIE2155, 13–23 (1994). [CrossRef]
  17. R. T. Weverka, K. Wagner, A. Sarto, “Photorefractive processing for large adaptive phased arrays,” Appl. Opt. 35, 1344–1366 (1996). [CrossRef] [PubMed]
  18. K. Wagner, S. Kraut, L. Griffiths, S. Weaver, R. T. Weverka, A. W. Sarto, “Efficient true-time-delay adaptive-array processing,” in Radar Processing, Technology, and Applications, W. J. Miceli, ed., Proc. SPIE2845, 287–300 (1996). [CrossRef]
  19. M. A. Copeland, D. Roy, J. D. E. Beynon, F. Y. K. Dea, “An optical CCD convlover,” IEEE Trans. Electron Devices ED-23, 152–155 (1976). [CrossRef]
  20. K. Bromley, A. C. H. Louie, R. D. Martin, J. J. Symanski, T. E. Keenan, M. A. Monahan, “Electro-optical signal processing module,” in Real-Time Signal Processing II, T. F. Tau, ed., Proc. SPIE180, 107–113 (1979). [CrossRef]
  21. T. Merlet, D. Dolfi, J.-P. Huignard, “A traveling fringes photodetector for microwave signals,” IEEE J. Quantum Electron. 32, 778–783 (1996). [CrossRef]
  22. D. Dolfi, T. Merlet, A. Mestreau, J.-P. Huignard, “Photodetector for microwave signals based on the synchronous drift of photogenerated carriers with a moving interference pattern,” Appl. Phys. Lett. 65, 2931–2933 (1994). [CrossRef]
  23. B. Widrow, S. D. Stearns, Adaptive Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1985).
  24. B. Widrow, P. E. Mantey, L. J. Griffiths, B. B. Goode, “Adaptive antenna systems,” Proc. IEEE 55, 2143–2161 (1967). [CrossRef]
  25. A. W. Sarto, R. T. Weverka, K. Wagner, “Beam-steering and jammer nulling photorefractive phased-array radar processor,” in Optoelectronic Signal Processing for Phased-Array Antennas IV, B. M. Hendrickson, ed., Proc. SPIE2155, 378–388 (1994). [CrossRef]
  26. A. W. Sarto, K. H. Wagner, R. T. Weverka, S. Blair, S. Weaver, “Photorefractive phased-array antenna beam-forming processor,” in Radar Processing, Technology, and Applications, W. J. Miceli, ed., Proc. SPIE2845, 307–318 (1996). [CrossRef]
  27. R. T. Compton, Adaptive Antennas (Prentice-Hall, Englewood Cliffs, N.J., 1988).
  28. M. A. G. Abushagur, H. J. Caulfield, “Speed and convergence of bimodal optical computers,” Opt. Eng. 26, 22–27 (1987). [CrossRef]
  29. A. W. Sarto, “Adaptive phased-array radar signal processing array using photoreactive crystals,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1996).
  30. R. T. Compton, “The effect of differential time delays in the LMS feedback loop,” IEEE Trans. Aerosp. Electron. Syst. AES-17, 222–228 (1981). [CrossRef]
  31. A. W. Sarto, K. H. Wagner, R. T. Weverka, S. Weaver, E. K. Walge, “Wide angular aperture holograms in photorefractive crystals by the use of orthogonally polarized write and read beams,” Appl. Opt. 35, 5765–5775 (1996). [CrossRef] [PubMed]
  32. A. Kiruluta, G. Kriehn, P. E. X. Silveira, S. Weaver, K. H. Wagner, “Operator notational analysis of a photorefractive phased array processor,” in Digest of Topical Meeting on Optics in Computing, Y. Fainman, ed. (Optical Society of America, Washington, D.C., 1999), 170–172.
  33. D. Z. Anderson, J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989). [CrossRef]
  34. A. A. Zozulya, D. Z. Anderson, “Spatial structure of light and a nonlinear refractive index generated by fanning in photorefractive media,” Phys. Rev. A 52, 878–881 (1995). [CrossRef] [PubMed]
  35. Y. Fainman, E. Klancnik, S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986). [CrossRef]
  36. M. Y. Frankel, R. D. Esman, “Optical single-side-band suppressed-carrier modulator for wide-band signal-processing,” J. Lightwave Technol. 16, 859–863 (1998). [CrossRef]
  37. M. H. Garrett, J. Y. Chang, H. P. Jenssen, C. Warde, “High photorefractive sensitivity in an n-type 45°-cut BaTiO3 crystal,” Opt. Lett. 17, 103–105 (1992). [CrossRef] [PubMed]
  38. A. VanderLugt, Optical Signal Processing (Wiley, New York, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited