OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 2 — Jan. 10, 2000
  • pp: 269–276

Communication theoretic image restoration for binary-valued imagery

Mark A. Neifeld, Ruozhong Xuan, and Michael W. Marcellin  »View Author Affiliations


Applied Optics, Vol. 39, Issue 2, pp. 269-276 (2000)
http://dx.doi.org/10.1364/AO.39.000269


View Full Text Article

Acrobat PDF (281 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new image-restoration algorithm for binary-valued imagery. A trellis-based search method is described that exploits the finite alphabet of the target imagery. This algorithm seeks the maximum-likelihood solution to the image-restoration problem and is motivated by the Viterbi algorithm for traditional binary data detection in the presence of intersymbol interference and noise. We describe a blockwise method to restore two-dimensional imagery on a row-by-row basis and in which a priori knowledge of image pixel correlation structure can be included through a modification to the trellis transition probabilities. The performance of the new Viterbi-based algorithm is shown to be superior to Wiener filtering in terms of both bit error rate and visual quality. Algorithmic choices related to trellis state configuration, complexity reduction, and transition probability selection are investigated, and various trade-offs are discussed.

© 2000 Optical Society of America

OCIS Codes
(100.3020) Image processing : Image reconstruction-restoration
(100.3190) Image processing : Inverse problems
(100.6640) Image processing : Superresolution

History
Original Manuscript: April 19, 1999
Revised Manuscript: October 20, 1999
Published: January 10, 2000

Citation
Mark A. Neifeld, Ruozhong Xuan, and Michael W. Marcellin, "Communication theoretic image restoration for binary-valued imagery," Appl. Opt. 39, 269-276 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-2-269


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. R. Banham, A. K. Katsaggelos, “Digital image restoration,” IEEE Signal Processing Mag. 14, 24–41 (1997). [CrossRef]
  2. M. I. Sezan, A. M. Tekalp, “Tutorial review of recent developments in digital image restoration,” in Visual Communications and Image Processing ’90: Fifth in a Series, M. Kunt, ed., Proc. SPIE1360, 1346–1359 (1990).
  3. H. C. Andrews, B. R. Hunt, Digital Image Restoration (Prentice-Hall, New Jersey, 1977).
  4. P. J. Verveer, T. M. Jovin, “Improved restoration from multiple images of a single object: application to fluorescence microscopy,” Appl. Opt. 37, 6240–6246 (1998). [CrossRef]
  5. M. Bertero, P. Boccacci, F. Maggio, “Regularization methods in image restoration: an application to HST images,” Int. J. Imaging Syst. Technol. 6, 376–386 (1995). [CrossRef]
  6. A. Herzog, G. Krell, B. Michaelis, J. Wang, W. Zuschratter, A. K. Brain, “Restoration of three-dimensional quasi-binary images from confocal microscopy and its application to dendritic trees,” in Three-Dimensional Microscopy: Image Acquisition and Processing IV, C. J. Cogswell, J. Conchello, T. Wilson, eds., Proc. SPIE2984, 146–157 (1997).
  7. J. C. Brailean, D. Little, M. L. Giger, C.-T. Chen, B. J. Sullivan, “Application of the EM algorithms to radiographic images,” Med. Phys. 19, 1175–1182 (1992). [CrossRef] [PubMed]
  8. K. Arzner, A. Magun, “Fast maximum entropy restoration of low-noise solar images,” Astron. Astrophys. 324, 735–742 (1997).
  9. E. Nezry, F. Yakam-Simen, F. Zagolski, I. Supit, “Control systems principals applied to speckle filtering and geophysical information extraction in multi-channel SAR images,” in Image Processing, Signal Processing, and Synthetic Aperture Radar for Remote Sensing, J. Desachy, S. Tajbakhsh, eds., Proc. SPIE3217, 48–57 (1997).
  10. L. D. Marks, “Wiener-filter enhancement of noisy HREM images,” Ultramicroscopy 62, 43–52 (1996). [CrossRef] [PubMed]
  11. G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639–641 (1997). [CrossRef] [PubMed]
  12. M. Keskinoz, B. V. K. Vijaya Kumar, “Application of linear minimum mean-squared-error equalization for volume holographic data storage,” Appl. Opt. 38, 4387–4393 (1999). [CrossRef]
  13. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. A 12, 2432–2439 (1995). [CrossRef]
  14. K. M. Chugg, X. Chen, M. A. Neifeld, “Two-dimensional equalization in coherent and incoherent page-oriented optical memory,” J. Opt. Soc. Am. A 16, 549–562 (1999). [CrossRef]
  15. B. King, M. A. Neifeld, “Parallel detection algorithm for page-oriented optical memories,” Appl. Opt. 37, 6275–6298 (1998). [CrossRef]
  16. J. Heanue, K. Gurkan, L. Hesselink, “Signal detection for page-access optical memories with intersymbol interference,” Appl. Opt. 35, 2431–2438 (1996). [CrossRef] [PubMed]
  17. X. Chen, K. M. Chugg, M. A. Neifeld, “Near-optimal parallel distributed data detection for page-oriented optical memories,” IEEE J. Sel. Top. Quantum Electron. 4, 866–879 (1998). [CrossRef]
  18. C. Miller, B. R. Hunt, M. A. Neifeld, M. W. Marcellin, “Binary image reconstruction via 2D Viterbi search,” Proceedings of the IEEE International Conference on Image Processing—ICIP97 (Institute of Electrical and Electronics Engineers, New York, 1997), Vol. 1, pp. 181–184.
  19. K. M. Chugg, X. Chen, A. Ortega, C.-W. Cheng, “An iterative algorithm for two-dimensional digital least metric problems with applications to digital image compression,” Proceedings of the IEEE International Conference on Image Processing—ICIP98 (Institute of Electrical and Electronics Engineers, New York, 1998), Vol. 2, pp. 722–726.
  20. P. W. Wong, “Entropy constrained halftoning using multipath tree coding,” IEEE Trans. Image Process. 6, 1567–1579 (1997). [CrossRef]
  21. H. L. van Trees, “Linear estimation,” in Detection, Estimation, and Modulation Theory Pt. I (Wiley, New York, 1968), pp. 481–493.
  22. G. Forney, “Maximum likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory IT-18, 363–378 (1972). [CrossRef]
  23. G. Forney, “The Viterbi algorithm,” Proc. IEEE 61, 268–278 (1973). [CrossRef]
  24. J. B. Anderson, S. Mohan, “Sequential coding algorithms: a survey and cost analysis,” IEEE Trans. Commun. COM-32, 169–176 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited