OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 2 — Jan. 10, 2000
  • pp: 324–332

Optical Field Study of Near-Field Optical Recording with a Solid Immersion Lens

Feng Guo, T. E. Schlesinger, and Daniel D. Stancil  »View Author Affiliations

Applied Optics, Vol. 39, Issue 2, pp. 324-332 (2000)

View Full Text Article

Acrobat PDF (192 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The use of a solid immersion lens (SIL) is an important technique for increasing areal density in optical recording. Here an approximate method is presented for analyzing the optical fields in a SIL above a half-space and a SIL above a multilayer recording medium. Both propagating and evanescent components are included in the distribution of fields below the SIL. An approximate closed-form expression is given for the decay of the intensity away from the SIL surface above a half-space. In the case of a SIL above a recording medium the model describes the strong oscillations that are observed in the reflected Kerr rotation and ellipticity as the medium spacing is varied. These oscillations are attributed to standing waves in the propagating field component.

© 2000 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(210.0210) Optical data storage : Optical data storage
(210.3810) Optical data storage : Magneto-optic systems
(260.1960) Physical optics : Diffraction theory

Feng Guo, T. E. Schlesinger, and Daniel D. Stancil, "Optical Field Study of Near-Field Optical Recording with a Solid Immersion Lens," Appl. Opt. 39, 324-332 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, and P. L. Finn, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
  2. P. Torok, C. J. R. Sheppard, and P. Varga, “Study of evanescent waves for transmission near-field optical microscopy,” J. Mod. Opt. 43, 1167–1183 (1996).
  3. R. D. Grober, T. Rutherford, and T. D. Harris, “Modal approximation for the electromagnetic field of a near-field optical probe,” Appl. Opt. 35, 3488–3495 (1996).
  4. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
  5. S. M. Mansfield, “Solid immersion microscopy,” G. L. Report 4949, Ph.D. dissertation (Edward L. Ginzton Laboratory, Stanford University, Stanford, Calif., 1992).
  6. B. D. Terris, H. J. Mamin, and D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
  7. I. Ichimura, K. Osato, F. Maeda, H. Owa, H. Ooki, and G. S. Kino, “High density optical disk system using a solid immersion lens,” in Optical Data Storage, G. R. Knight, H. Ooki, and Y. Tyan, eds., Proc. SPIE 2514, 176–181 (1995).
  8. T. Suzuki, Y. Itoh, M. Birukawa, and W. Van Drent, “Solid immersion lens near field optical approach for high density optical recording,” IEEE Trans. Magn. 34, 399–403 (1998).
  9. I. Ichimura, S. Hayashi, and G. S. Kino, “High-density optical recording using a solid immersion lens,” Appl. Opt. 36, 4339–4348 (1997).
  10. G. S. Kino, “Fields associated with the solid immersion lens,” in Far- and Near-Field Optics: Physics and Information Processing, S. Jutamulia and T. Asakura, eds., Proc. SPIE 3467, 128–137 (1998).
  11. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
  12. M. Mansuripur, “Distribution of light at and near the focus of high-numerical-aperture objectives,” J. Opt. Soc. Am. A 3, 2086–2093 (1986).
  13. M. Mansuripur, “Effects of high-numerical-aperture focusing on the state of polarization in optical and magneto-optic data storage systems,” Appl. Opt. 30, 3154–3162 (1991).
  14. D. G. Flagello, T. Milster, and A. E. Rosenbluth, “Theory of high-NA imaging in homogeneous thin films,” J. Opt. Soc. Am. A 13, 53–64 (1996).
  15. D. G. Flagello and T. D. Milster, “High-numerical-aperture effects in photoresist,” Appl. Optics 36, 8944–8951 (1997).
  16. H. Ling and S.-W. Lee, “Focusing of electromagnetic waves through a dielectric interface,” J. Opt. Soc. Am. A 1, 965–973 (1984).
  17. J. Mathews and R. L. Walker, Mathematical Methods of Physics, 2nd ed. (Benjamin, New York, 1970), p. 109.
  18. D. O. Smith, “Magneto-optical scattering from multi-layer magnetic and dielectric films. Part I. General theory,” Opt. Acta 12, 13–45 (1965).
  19. M. Mansuripur, “Analysis of multilayer thin film structures containing magneto-optic and anisotropic media at oblique incidence using 2 × 2 matrices,” J. Appl. Phys. 67, 6466–6475 (1990).
  20. P. H. Lissberger, “Thin film magneto-optics,” in Applied Magnetism, R. Gerber, C. D. Wright, and G. Asti, eds. NATO ASI Ser. E 253,
  21. T. D. Milster, J. S. Jo, K. Hirota, K. Shimura, and Y. Zhang, “The nature of the coupling field in optical data storage using solid immersion lenses,” Jpn. J. Appl. Phys. Part 1 38, 1793–1794 (1999).
  22. T. D. Milster, J. S. Jo, and K. Hirota, “Roles of propagating and evanescent waves in solid immersion lens systems,” Appl. Opt. 38, 5046–5056 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited