OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 20 — Jul. 10, 2000
  • pp: 3537–3550

Retrieval of geophysical parameters from Moderate Resolution Imaging Spectroradiometer thermal infrared data: evaluation of a two-step physical algorithm

Xia L. Ma, Zhengming Wan, Christopher C. Moeller, W. Paul Menzel, Liam E. Gumley, and Yulin Zhang  »View Author Affiliations

Applied Optics, Vol. 39, Issue 20, pp. 3537-3550 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (716 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A two-step physical algorithm that simultaneously retrieves geophysical parameters from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements was developed. The retrieved geophysical parameters include atmospheric temperature–humidity profile, surface skin temperature, and two surface emissivities within the shortwave (3–5-µm) and the longwave (8–14.5-µm) regions. The physical retrieval is accomplished in two steps: (i) The Tikhonov regularization method is employed to generate a regularization solution along with an optimum regularization parameter; (ii) the nonlinear Newtonian iteration algorithm is carried out with the regularization solution as a first-guess profile to obtain a final maximum probability solution for geophysical parameters. The algorithm was tested with both simulated and real MODIS Airborne Simulator (MAS) data. Sensitivity studies on simulated MAS data demonstrate that simultaneous retrievals of land and atmospheric parameters improve the accuracy of the retrieved geophysical parameters. Finally, analysis and accuracy of retrievals from real MAS data are discussed.

© 2000 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(280.0280) Remote sensing and sensors : Remote sensing and sensors

Original Manuscript: September 3, 1999
Revised Manuscript: April 28, 2000
Published: July 10, 2000

Xia L. Ma, Zhengming Wan, Christopher C. Moeller, W. Paul Menzel, Liam E. Gumley, and Yulin Zhang, "Retrieval of geophysical parameters from Moderate Resolution Imaging Spectroradiometer thermal infrared data: evaluation of a two-step physical algorithm," Appl. Opt. 39, 3537-3550 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 145–153 (1998). [CrossRef]
  2. M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S. C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996). [CrossRef]
  3. W. P. Menzel, L. E. Gumley, “MODIS atmospheric profile retrieval algorithm theoretical basis document,” (Earth Observing System Project Science Office, NASA Goddard Space Flight Center, Greenbelt, Md., 1998).
  4. S. A. Clough, M. J. Iacono, “Line-by-line calculations of atmospheric fluxes and cooling rates. 2. Applications to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons,” J. Geophys. Res. 100, 16519–16535 (1995). [CrossRef]
  5. W. L. Smith, H. M. Woolf, A. J. Schriener, “Simultaneous retrieval of surface and atmospheric parameters: a physical and analytically direct approach,” in Advances in Remote Sensing Retrieval Method, A. Deepak, H. E. Flemming, M. T. Chahine, eds. (Deepak, Hampton, Va., 1985), pp. 221–232.
  6. W. L. Smith, H. M. Woolf, H. B. Howell, H.-L. Huang, H. E. Revercomb, “The simultaneous retrieval of atmospheric temperature and water vapor profiles—application to measurements with the high spectral resolution interferometer sounder (HIS),” in Advances in Remote Sensing Retrieval Methods, A. Deepak, H. E. Flemming, J. S. Theon, eds. (Deepak, Hampton, Va., 1989), pp. 189–202.
  7. W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990). [CrossRef]
  8. W. L. Smith, H. M. Woolf, H. E. Revercomb, “Linear simultaneous solution for temperature and observing constituent profiles from radiance spectra,” Appl. Opt. 30, 1117–1123 (1991). [CrossRef] [PubMed]
  9. W. L. Smith, H. M. Woolf, C. M. Hayden, A. J. Schreiner, “The simultaneous retrieval export package,” presented at the Second International TOVS Study Conference, Igls, Austria, 18–22 February 1985 (Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wis., 1985), pp. 224–253.
  10. H.-L. Huang, “An analysis of the characteristics of the atmospheric profiles obtained with the High-Resolution Interferometer Sounder (HIS),” Ph.D. dissertation (University of Wisconsin—Madison, Madison, Wis., 1989).
  11. C. H. Hayden, “GOES-VAS simultaneous temperature-moisture retrieval algorithm,” J. Appl. Meteorol. 27, 705–733 (1988). [CrossRef]
  12. T. Schmidt, National Oceanic and Atmospheric Administration/National Environmental Satellite, Data, and Information Service, Office of Research and Applications, Advanced Satellite Products Team, Madison, Wis. 53706 (personal communication, 2000).
  13. Y. Plokhenko, W. P. Menzel, “The effects of surface reflection on estimating the vertical temperature–humidity distribution from spectral infrared measurements,” J. Appl. Meteorol. 39, 3–14 (2000). [CrossRef]
  14. Z. M. Wan, J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Remote Sens. 34, 892–905 (1996). [CrossRef]
  15. Z. M. Wan, Z. L. Li, “A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data,” IEEE Trans. Geosci. Remote Sens. 35, 980–996 (1997). [CrossRef]
  16. B. Huang, “New approach to simultaneous retrieval of atmospheric profiles from radiance spectra,” Ph.D. dissertation (University of Wisconsin—Madison, Madison, Wis., 1998).
  17. X. L. Ma, T. J. Schmit, W. L. Smith, “A non-linear physical retrieval algorithm—its application to the GOES-8/9 sounder,” J. Appl. Meteorol. 38, 501–513 (1999). [CrossRef]
  18. J. Li, H. L. Huang, “Retrieval of atmospheric profiles from satellite sounder measurements by use of the discrepancy principle,” Appl. Opt. 38, 916–923 (1999). [CrossRef]
  19. J. R. Eyre, “Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. I. Theory and simulation for TOVS,” Q. J. R. Meteorol. Soc. 115, 1001–1026 (1989). [CrossRef]
  20. J. R. Eyre, “Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. II. Application to TOVS data,” Q. J. R. Meteorol. Soc. 115, 1027–1037 (1989). [CrossRef]
  21. W. L. Smith, H. L. Huang, M. S. Whipple, S. P. Ho, “UW-CIMSS physical retrieval system science document for AIRS/AMSU/MHS,” (Jet Propulsion Laboratory, NASA, Pasedena, Calif., 1996).
  22. O. B. Toon, R. C. Miake-Lye, “Subsonic aircraft: contrail and cloud effects special study (SUCCESS),” Geophys. Res. Lett. 25, 1109–1112 (1998). [CrossRef]
  23. W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean-implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996). [CrossRef]
  24. W. C. Snyder, Z. M. Wan, Y. L. Zhang, Y. Z. Feng, “Thermal infrared (3–14 µm) bidirectional reflectance measurements of sands and soils,” Remote Sens. Environ. 60, 101–109 (1997). [CrossRef]
  25. J. Li, “Temperature and water vapor weighting functions from radiative transfer equation with surface emissivity and solar reflectivity,” Adv. Atmos. Sci. 11, 421–426 (1994). [CrossRef]
  26. The 40 levels for the MAS aircraft pressure coordinates are as follows: 50, 60, 70, 75, 80, 85, 90, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 550, 600, 620, 640, 660, 680, 700, 720, 740, 760, 780, 800, 820, 840, 860, 880, 900, 920, 940, 960, 980, and 1000 hPa.
  27. W. L. Smith, H. M. Woolf, “The use of eigenvectors of statistical covariance matrices for interpreting satellite sounding radiometer observations,” J. Atmos. Sci. 33, 1127–1140 (1976). [CrossRef]
  28. A. N. Tikhonov, “Solution of incorrectly formulated problems and the regularization method,” Sov. Math. Dokl. 4, 1035–1038 (1963).
  29. A. N. Tikhonov, “Regularization of incorrectly posed problems,” Sov. Math. Dokl. 4, 1624–1627 (1963).
  30. A. N. Tikhonov, V. Y. Arsenin, Solutions of Ill-Posed Problems (Winston, Washington, D.C., 1977).
  31. A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems (Kluwer, Dordrecht, the Netherlands, 1995). [CrossRef]
  32. G. Bachus, F. Gillbert, “Uniqueness in the inversion of inaccurate gross earth data,” Philos. Trans. R. Soc. London Ser. A 266, 123–192 (1970). [CrossRef]
  33. S. Twomey, “On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature,” J. Assoc. Comput. Math. 10, 97–101 (1963). [CrossRef]
  34. C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609–624 (1976). [CrossRef]
  35. P. C. Hansen, “Rank-deficient and discrete ill-posed problems,” Ph.D. dissertation (Technical University of Denmark, Lyngby, Denmark, 1996).
  36. G. Wahba, “Ill-posed problems: numerical and statistical methods for mildly, moderately and severely ill-posed problems with noise data,” Tech. Rep.595, (Statistics Department, University of Wisconsin-Madison, Madison, Wis., 1980).
  37. G. Wahba, Spline Methods for Observational Data, Vol. 59 of CBMS-NSF Regional Conference Series in Applied Mathematics (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1990).
  38. J. R. Eyre, “A fast radiative transfer model for satellite sounding systems,” Tech. Memo176, (European Centre for Medium-Range Weather Forecast, Reading, UK, 1991).
  39. S. Hannon, L. L. Strow, W. W. McMillan, “Atmospheric infrared fast transmittance model: a comparison of two approaches,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays, J. Wang, eds., Proc. SPIE2830, 94–105 (1996). [CrossRef]
  40. H. M. Woolf, P. V. Delst, W. J. Zhang, “NOAA-15 HIRS/3 and AMSU transmittance model validation,” in Proceedings of the Tenth International TOVS Study (Bureau of Metrology Resource Center, Melbourne, 1999), pp. 564–573.
  41. J. Wang, G. P. Anderson, H. E. Revercomb, R. O. Knuteson, “Validation of FASCODE3 and MODTRAN3: comparison of model calculations with ground-based and airborne interferometer observations under clear-sky conditions,” Appl. Opt. 35, 6028–6040 (1996). [CrossRef] [PubMed]
  42. J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 µm atmospheric window,” Remote Sens. Environ. 42, 83–106 (1992). [CrossRef]
  43. J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 3–5 µm atmospheric window,” Remote Sens. Environ. 47, 345–361 (1994). [CrossRef]
  44. W. L. Smith, H. M. Woolf, P. G. Abel, C. M. Hayden, M. Chalfant, N. Grody, “NIMBUS-5 sounder data processing system. Part 1. Measurement characteristics and data reduction procedures,” NOAA Tech. Memo NESS57 (National Oceanic and Atmospheric Administration, Washington, D.C., 1974), pp. 36–41.
  45. C. M. Hayden, T. J. Schmit, “Initial evaluation of the GOES-8 sounder,” presented at the Ninth Symposium on Meteorological Observations and Instrumentation Charlotte, N.C., 27–31 March 1995 (American Meteorological Society, Boston, Mass., 1995), pp. 385–390.
  46. C. J. Tucker, “Red and photographic infrared linear combinations for monitoring vegetation,” Remote Sens. Environ. 8, 127–150 (1979). [CrossRef]
  47. C. O. Justice, J. R. G. Townshend, B. N. Holben, C. J. Tucker, “Analysis of the phenology of global vegetation using meteorological satellite data,” Int. J. Remote Sens. 6, 1271–1318 (1985). [CrossRef]
  48. F. J. Schmidlin, “WMO international radiosonde comparison, phase II,” , in Instruments and Observing Methods, (World Meteorological Organisation, Geneva, Switzerland, 1985), pp. 1–113; available from WMO Secretariat, 41 Avenue Giuseppe Motta, Case Postale 2300, CH-1211 Geneva 2, Switzerland.
  49. C. G. Wade, “An evaluation of problems affecting measurement of low relative humidity on the United States radiosonde,” J. Atmos. Ocean. Technol. 11, 687–700 (1994). [CrossRef]
  50. R. W. Pratt, “Review of radiosonde humidity and temperature errors,” J. Atmos. Ocean. Technol. 2, 404–407 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited