OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 21 — Jul. 20, 2000
  • pp: 3582–3591

Atmospheric correction of satellite ocean color imagery: the black pixel assumption

David A. Siegel, Menghua Wang, Stéphane Maritorena, and Wayne Robinson  »View Author Affiliations


Applied Optics, Vol. 39, Issue 21, pp. 3582-3591 (2000)
http://dx.doi.org/10.1364/AO.39.003582


View Full Text Article

Enhanced HTML    Acrobat PDF (1863 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The assumption that values of water-leaving radiance in the near-infrared (NIR) are negligible enable aerosol radiative properties to be easily determined in the correction of satellite ocean color imagery. This is referred to as the black pixel assumption. We examine the implications of the black pixel assumption using a simple bio-optical model for the NIR water-leaving reflectance [ρ w NIR)] N . In productive waters [chlorophyll (Chl) concentration >2 mg m-3], estimates of [ρ w NIR)] N are several orders of magnitude larger than those expected for pure seawater. These large values of [ρ w NIR)] N result in an overcorrection of atmospheric effects for retrievals of water-leaving reflectance that are most pronounced in the violet and blue spectral region. The overcorrection increases dramatically with Chl, reducing the true water-leaving radiance by roughly 75% when Chl is equal to 5 mg m-3. Relaxing the black pixel assumption in the correction of Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) satellite ocean color imagery provides significant improvements in Chl and water-leaving reflectance retrievals when Chl values are greater than 2 mg m-3. Improvements in the present modeling of [ρ w NIR)] N are considered, particularly for turbid coastal waters. However, this research shows that the effects of nonzero NIR reflectance must be included in the correction of satellite ocean color imagery.

© 2000 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors

History
Original Manuscript: September 15, 1999
Revised Manuscript: May 4, 2000
Published: July 20, 2000

Citation
David A. Siegel, Menghua Wang, Stéphane Maritorena, and Wayne Robinson, "Atmospheric correction of satellite ocean color imagery: the black pixel assumption," Appl. Opt. 39, 3582-3591 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-21-3582


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102, 17,081–17,106 (1997). [CrossRef]
  2. H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994). [CrossRef] [PubMed]
  3. H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988). [CrossRef] [PubMed]
  4. H. R. Gordon, M. Wang, “Surface roughness considerations for atmospheric correction of ocean color sensors. 1: The Rayleigh scattering component,” Appl. Opt. 31, 4247–4260 (1992). [CrossRef] [PubMed]
  5. M. Wang, “Atmospheric correction of ocean color sensors: computing atmospheric diffuse transmittance,” Appl. Opt. 38, 451–455 (1999). [CrossRef]
  6. H. Yang, H. R. Gordon, “Remote sensing of ocean color: assessment of water-leaving radiance bidirectional effects on atmospheric diffuse transmittance,” Appl. Opt. 36, 7887–7897 (1997). [CrossRef]
  7. H. R. Gordon, M. Wang, “Influence of oceanic whitecaps on atmospheric correction of ocean-color sensor,” Appl. Opt. 33, 7754–7763 (1994). [CrossRef] [PubMed]
  8. R. Frouin, M. Schwindling, P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared—in situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14,361–14,371 (1996). [CrossRef]
  9. K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105, 6493–6499 (2000). [CrossRef]
  10. H. R. Gordon, D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981). [CrossRef] [PubMed]
  11. H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983). [CrossRef]
  12. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998). [CrossRef]
  13. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988). [CrossRef]
  14. S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: I. Time series from the Sargasso Sea,” J. Geophys. Res. 102, 18,607–18,625 (1997). [CrossRef]
  15. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999). [CrossRef]
  16. C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 39, 10–16 (1998).
  17. B. D. Schieber, C. R. McClain, “LwN and chlorophyll-a matchup analyses,” in SeaWiFS Postlaunch Calibration and Validation Analysis, ,S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  18. R. A. Arnone, P. Martinolich, R. W. Gould, M. Sydor, R. P. Stumpf, “Coastal optical properties using SeaWiFS,” Ocean Optics XIV Conference, Kailua-Kona, Hawaii, 10–13 November 1998; Ocean Optics XIV CD-ROM (Office of Naval Research, Washington, D.C., 1998).
  19. K. G. Ruddick, F. Ovidio, M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39, 897–912 (2000). [CrossRef]
  20. C. Hu, K. L. Carder, F. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. (to be published).
  21. R. W. Austin, “The remote sensing of spectral radiance from below the ocean surface,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielson, eds. (Academic, San Diego, Calif., 1974), pp. 317–344.
  22. G. M. Hale, M. R. Query, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]
  23. R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177–184 (1981). [CrossRef] [PubMed]
  24. A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31,033–31,044 (1998). [CrossRef]
  25. R. W. Gould, R. A. Arnone, P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38, 2377–2383 (1999). [CrossRef]
  26. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters),” J. Geophys. Res. 93, 10,749–10,768 (1988). [CrossRef]
  27. H. Loisel, A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998). [CrossRef]
  28. B. C. Johnson, E. E. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, “The 1997 prelaunch radiometric calibration of SeaWiFS,” Vol. 4 of , S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).
  29. M. Wang, “A sensitivity study of SeaWiFS atmospheric correction algorithm: effects of spectral band variations,” Remote Sens. Environ. 67, 348–359 (1999). [CrossRef]
  30. S. Maritorena, J. O’Reilly, “Update on the operational SeaWiFS chlorophyll a algorithm,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 2, Vol. 9, , S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  31. C. D. Mobley, Hydrolight 4.0 Users Guide (Sequoia Scientific, Inc., Mercer Island, Wash., 1998).
  32. W. S. Pegau, D. Gray, J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36, 6035–6046 (1997). [CrossRef] [PubMed]
  33. M. Sydor, R. A. Arnone, “Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters,” Appl. Opt. 36, 6905–6912 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited