OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 21 — Jul. 20, 2000
  • pp: 3644–3648

Fields of nonlinear cladding optical waveguides excited by butt-coupled linear waveguides at medium power levels

Kiyoshi Tsutsumi and Eiji Aoki  »View Author Affiliations

Applied Optics, Vol. 39, Issue 21, pp. 3644-3648 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (195 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The evolution of medium power fields of nonlinear optical waveguides is investigated numerically. The analysis method is based on mode matching of local normal modes of bounded waveguides. Nonlinear cladding waveguides are butt-coupled to linear waveguides. The path of a medium power level beam winds between the film and the nonlinear cladding. The input beam travels toward the nonlinear modal field, at which point the beam is not stationary. After the beam passes the location, it is forced to turn back. The lateral shift of an incident waveguide affects the path of a beam. Saturation and linear absorption lessens the oscillation of a winding path.

© 2000 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.4310) Integrated optics : Nonlinear
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

Original Manuscript: October 6, 1999
Revised Manuscript: April 27, 2000
Published: July 20, 2000

Kiyoshi Tsutsumi and Eiji Aoki, "Fields of nonlinear cladding optical waveguides excited by butt-coupled linear waveguides at medium power levels," Appl. Opt. 39, 3644-3648 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. T. Seaton, X. Mai, G. I. Stegeman, H. G. Winful, “Nonlinear guided wave applications,” Opt. Eng. 24, 593–599 (1985).
  2. G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953–970 (1988). [CrossRef]
  3. D. Mihalache, M. Bertolotti, C. Sibilia, “Nonlinear wave propagation in planar structures,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1989), Vol. 27, pp. 227–313. [CrossRef]
  4. M. Bertolotti, “Introduction to nonlinear guided waves,” in Advances in Integrated Optics, S. Martellucci, A. N. Chester, M. Bertolotti, ed. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 21–55. [CrossRef]
  5. J. V. Moloney, J. Ariyasu, C. T. Seaton, G. I. Stegeman, “Stability of nonlinear stationary waves guided by a thin film bounded by nonlinear media,” Appl. Phys. Lett. 48, 826–828 (1986). [CrossRef]
  6. J. V. Moloney, J. Ariyasu, C. T. Seaton, G. I. Stegeman, “Numerical evidence for nonstationary, nonlinear, slab-guided waves,” Opt. Lett. 11, 315–317 (1986). [CrossRef] [PubMed]
  7. J. Ariyasu, C. T. Seaton, G. I. Stegeman, J. V. Moloney, “New theoretical developments in nonlinear guided waves: stability of TE1 branches,” IEEE J. Quantum Electron. QE-22, 984–987 (1986). [CrossRef]
  8. L. Leine, Ch. Wachter, U. Langbein, F. Lederer, “Propagation phenomena of nonlinear film-guided waves: a numerical analysis,” Opt. Lett. 11, 590–592 (1986). [CrossRef] [PubMed]
  9. M. A. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Effects of absorption on TE0 nonlinear guided waves,” Opt. Commun. 61, 357–362 (1987). [CrossRef]
  10. D. Mihalache, D. Mazilu, “Stability and instability of nonlinear guided waves in saturable media,” Solid State Commun. 63, 215–217 (1987). [CrossRef]
  11. D. Mihalache, D. Mazilu, “Stability of nonlinear stationary slab-guided waves in saturable media: a numerical analysis,” Phys. Lett. 122, 381–384 (1987). [CrossRef]
  12. J. Atai, Y. Chen, “Stability of the asymmetric nonlinear mode trapped in symmetric planar waveguides,” J. Lightwave Technol. 11, 577–581 (1993). [CrossRef]
  13. E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Gaussian beam excitation of TE0 nonlinear guided waves,” Appl. Phys. Lett. 49, 435–436 (1986). [CrossRef]
  14. E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, A. D. Boardman, “Multisoliton emission from a nonlinear waveguide,” Phys. Rev. A 34, 4442–4444 (1986). [CrossRef] [PubMed]
  15. M. A. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, “Numerical study of soliton emission from a nonlinear waveguide,” J. Opt. Soc. Am. B 4, 1837–1842 (1987). [CrossRef]
  16. L. Leine, C. Wächter, U. Langbein, F. Lederer, “Evolution of nonlinear guided optical fields down a dielectric film with a nonlinear cladding,” J. Opt. Soc. Am. B 5, 547–558 (1988). [CrossRef]
  17. S. Ohke, T. Umeda, Y. Cho, “Analysis on waveguiding property of GaAs-AlGaAs MQW nonlinear optical waveguide,” Trans. Inst. Electron. Inf. Commun. Eng. C-I, J73, 573–579 (1990), in Japanese.
  18. M. Bertolotti, P. Masciulli, C. Sibilia, “Mol numerical analysis of nonlinear planar waveguide,” J. Lightwave Technol. 12, 784–789 (1994). [CrossRef]
  19. H. Yokota, M. Hira, S. Kurazono, “Iterative finite difference beam propagation method analysis of nonlinear optical waveguide excitation problem,” Trans. Inst. Electron. Inf. Commun. Eng. C-I, J77, 529–535 (1994), in Japanese.
  20. T. Rozzi, L. Zappelli, “Modal analysis of nonlinear propagation in dielectric slab waveguide,” J. Lightwave Technol. 14, 229–235 (1996). [CrossRef]
  21. T. Yasui, M. Koshiba, A. Niiyama, Y. Tsuji, “Finite element beam propagation method for nonlinear optical waveguides,” Trans. Inst. Electron. Inf. Commun. Eng. C-I, J81, 417–422 (1998), in Japanese.
  22. K. Tsutsumi, Y. Imada, H. Hirai, Y. Yuba, “Analysis of single-mode optical Y-junctions by the bounded step and bend approximation,” J. Lightwave Technol. 6, 590–600 (1988). [CrossRef]
  23. D. Marcuse, Light Transmission Optics, 2nd ed. (Van Nostrand Reinhold, New York, 1982), Sec. 7.2.
  24. Y. Suematsu, K. Iga, Introduction to Optical Fiber Communications, 3rd ed. (Ohm-sha, Tokyo, 1989), Sec. 3.1, in Japanese.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited