OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 21 — Jul. 20, 2000
  • pp: 3649–3653

Investigation of the effect of finite grating size on the performance of guided-mode resonance filters

Robert R. Boye and Raymond K. Kostuk  »View Author Affiliations

Applied Optics, Vol. 39, Issue 21, pp. 3649-3653 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (254 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We evaluate the effect of finite aperture gratings on the spectral and efficiency characteristics of guided-mode resonance filters. A simple analytical model based on the attenuation properties of the waveguide and a fixed length of the grating aperture is developed. The results from this model are in good agreement with experimental filters formed with subwavelength period photoresist gratings and solgel waveguides.

© 2000 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.3120) Integrated optics : Integrated optics devices
(230.3990) Optical devices : Micro-optical devices
(230.7370) Optical devices : Waveguides
(260.1960) Physical optics : Diffraction theory
(260.5740) Physical optics : Resonance

Original Manuscript: November 29, 1999
Revised Manuscript: April 17, 2000
Published: July 20, 2000

Robert R. Boye and Raymond K. Kostuk, "Investigation of the effect of finite grating size on the performance of guided-mode resonance filters," Appl. Opt. 39, 3649-3653 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Hessel, A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965). [CrossRef]
  2. P. Vincent, M. Nevière, “Corrugated dielectric waveguides: a numerical study of the second-order stop bands,” Appl. Phys. 20, 345–351 (1979). [CrossRef]
  3. L. Mashev, E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985). [CrossRef]
  4. E. Popov, L. Mashev, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986). [CrossRef]
  5. S. S. Wang, R. Magnusson, J. S. Bagby, M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1470–1474 (1990). [CrossRef]
  6. M. Nevière, E. Popov, R. Reinisch, “Electromagnetic resonances in linear and nonlinear optics: phenomenological study of grating behavior through the poles and zeros of the scattering operator,” J. Opt. Soc. Am. A 12, 513–523 (1995). [CrossRef]
  7. A. Sharon, S. Glasberg, D. Rosenblatt, A. A. Friesem, “Metal-based resonant grating waveguide structures,” J. Opt. Soc. Am. A 14, 588–595 (1997). [CrossRef]
  8. S. Peng, G. M. Morris, “Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings,” Opt. Lett. 21, 549–551 (1996). [CrossRef] [PubMed]
  9. D. L. Brundett, E. N. Glytis, T. K. Gaylord, “Normal-incidence guided-mode resonant grating filters: design and experimental demonstration,” Opt. Lett. 23, 700–702 (1998). [CrossRef]
  10. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett. 23, 1556–1558 (1998). [CrossRef]
  11. I. A. Avrutskii, V. A. Sychugov, “Reflection of a Gaussian light beam from the surface of a corrugated waveguide,” Sov. J. Quantum Electron. 16, 1558–1559 (1986). [CrossRef]
  12. M. T. Gale, K. Knop, R. Morf, “Zero-order diffractive microstructures for security applications,” in Optical Security and Anticounterfeiting Systems, W. F. Fagen, ed., Proc. SPIE1210, 83–89 (1990). [CrossRef]
  13. A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, R. Steingrueber, “Light modulation with resonant grating-wavelength structures,” Opt. Lett. 21, 1564–1566 (1996). [CrossRef] [PubMed]
  14. J. A. Cox, R. A. Morgan, R. Wilke, C. Ford, “Guided-mode resonant filters for VCSEL applications,” in Diffractive and Holographic Device Technologies and Applications V, I. Cindrich, S. H. Lee, eds., Proc. SPIE3291, 70–76 (1998). [CrossRef]
  15. I. A. Avrutsky, V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36, 1527–1539 (1989). [CrossRef]
  16. R. Magnusson, S. S. Wang, “Characteristics of waveguide-grating filters: plane wave and Gaussian beam illumination,” in IEEE Lasers and Electro-Optics Society 1993 Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 157–158.
  17. F. Lemarchand, A. Sentenac, H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23, 1149–1151 (1998). [CrossRef]
  18. R. R. Boye, R. W. Ziolkowski, R. K. Kostuk, “Resonant waveguide-grating switching device with nonlinear optical material,” Appl. Opt. 38, 5181–5185 (1999). [CrossRef]
  19. J. Saarinen, E. Noponen, J. Turunen, “Guided-mode resonance filters of finite aperture,” Opt. Eng. 34, 2560–2566 (1995). [CrossRef]
  20. J. C. Brazas, L. Li, “Analysis of input-grating couplers having finite lengths,” Appl. Opt. 34, 3786–3792 (1995). [CrossRef] [PubMed]
  21. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  22. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited