OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 21 — Jul. 20, 2000
  • pp: 3654–3663

Rear-surface laser damage on 355-nm silica optics owing to Fresnel diffraction on front-surface contamination particles

François Y. Génin, Michael D. Feit, Mark R. Kozlowski, Alexander M. Rubenchik, Alberto Salleo, and James Yoshiyama  »View Author Affiliations


Applied Optics, Vol. 39, Issue 21, pp. 3654-3663 (2000)
http://dx.doi.org/10.1364/AO.39.003654


View Full Text Article

Enhanced HTML    Acrobat PDF (2084 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Light intensity modulations caused by opaque obstacles (e.g., dust) on silica lenses in high-power lasers often enhance the potential for laser-induced damage. To study this effect, particles (10–250 µm) with various shapes were sputter deposited on the input surface and irradiated with a 3-ns laser beam at 355 nm. Although a clean silica surface damages at fluences above 15 J/cm2, a surface contaminated with particles can damage below 11.5 J/cm2. A pattern that conforms to the shape of the input surface particle is printed on the output surface. Repetitive illumination resulted in catastrophic drilling of the optic. The damage pattern correlated with an interference image of the particle before irradiation. The image shows that the incident beam undergoes phase (and amplitude) modulations after it passes around the particle. We modeled the experiments by calculating the light intensity distribution behind an obscuration by use of Fresnel diffraction theory. The comparison between calculated light intensity distribution and the output surface damage pattern showed good agreement. The model was then used to predict the increased damage vulnerability that results from intensity modulations as a function of particle size, shape, and lens thickness. The predictions provide the basis for optics cleanliness specifications on the National Ignition Facility to reduce the likelihood of optical damage.

© 2000 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials

History
Original Manuscript: October 12, 1999
Revised Manuscript: March 30, 2000
Published: July 20, 2000

Citation
François Y. Génin, Michael D. Feit, Mark R. Kozlowski, Alexander M. Rubenchik, Alberto Salleo, and James Yoshiyama, "Rear-surface laser damage on 355-nm silica optics owing to Fresnel diffraction on front-surface contamination particles," Appl. Opt. 39, 3654-3663 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-21-3654


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. E. Newnam, “Optical materials for high-power lasers: recent achievements,” Laser Focus 18 (2), 53–56 (1982).
  2. J. T. Hunt, K. R. Manes, P. A. Renard, “Hot images from obscurations,” Appl. Opt. 32, 5973–5982 (1993). [CrossRef] [PubMed]
  3. C. C. Widmayer, D. Milam, S. P. deSzoeke, “Nonlinear formation of holographic images of obscurations in laser beams,” Appl. Opt. 36, 9342–9347 (1997). [CrossRef]
  4. J. E. Murray, B. Van Wonterghem, L. Seppala, D. R. Speck, J. R. Murray, “Parasitic pencil beams caused by lens reflections in laser amplifier chains,” in Solid State Lasers for Application to Inertial Confinement Fusion, W. F. Krupke, ed., Proc. SPIE2633, 608–614 (1995). [CrossRef]
  5. F. Y. Génin, K. Michlitsch, J. Furr, M. R. Kozlowski, P. Krulevitch, “Laser-induced damage of fused silica at 355 and 1064 nm initiated at aluminum contamination particles on the surface,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 126–138 (1997).
  6. F. Y. Génin, M. R. Kozlowski, R. Brusasco, “Catastrophic failure of contaminated fused silica optics at 355 nm,” in Solid State Lasers for Application to Inertial Confinement Fusion: Second Annual International Conference, M. L. Andre, ed., Proc. SPIE3047, 978–986 (1997).
  7. K. Affolter, W. Luthy, M. Wittmer, “Interference effects on the surface of Nd:YAG-laser-reacted Pd-silicide,” Appl. Phys. Lett. 36, 559–561 (1980). [CrossRef]
  8. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), p. xxiii.
  9. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 18, p. 735.
  10. J. A. Lock, E. A. Hovenac, “Diffraction of a Gaussian beam by a spherical obstacle,” Am. J. Phys. 61, 698–706 (1993). [CrossRef]
  11. E. A. Hovenac, “Fresnel diffraction by spherical obstacles,” Am. J. Phys. 57, 79–84 (1989). [CrossRef]
  12. G. E. Sommargren, H. J. Weaver, “Diffraction of light by an opaque sphere. I. Description and properties of the diffraction pattern,” Appl. Opt. 29, 4646–4657 (1990). [CrossRef] [PubMed]
  13. G. Gouesbet, B. Maheu, G. Grehan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988). [CrossRef]
  14. J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988). [CrossRef]
  15. J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989). [CrossRef]
  16. D. S. Burch, “Fresnel diffraction by a circular aperture,” Am. J. Phys. 53, 255–260 (1985). [CrossRef]
  17. P. M. Rinard, “Large-scale diffraction patterns from circular objects,” Am. J. Phys. 44, 70–76 (1976). [CrossRef]
  18. I. A. Fersman, L. D. Khazov, “The effect of surface cleanliness of optical elements on their radiation resistance,” Opt. Mekh. Promst. 37, 69–70 (1971).
  19. G. R. Wirtenson, “High fluence effects on optics in the Argus and Shiva laser chains,” Opt. Eng. 18, 574–578 (1979). [CrossRef]
  20. H. E. Bennett, “Insensitivity of the catastrophic damage threshold of laser optics to dust and other surface defects,” in Laser Induced Damage in Optical Materials, Natl. Bur. Stand. (U.S.) Spec. Publ. 620, 256–264 (1981).
  21. G. A. Harvey, T. H. Chyba, M. C. Cimolino, “Cleanliness and damage measurements of optics in atmospheric sensing high energy lasers,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 696–706 (1996).
  22. M. D. Feit, A. M. Rubenchik, D. R. Faux, R. A. Riddle, A. Shapiro, D. C. Eder, B. M. Penetrante, D. Milam, F. Y. Génin, M. R. Kozlowski, “Modeling of laser damage initiated by surface contamination,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., SPIE2966, 417–424 (1997).
  23. J. A. Fleck, C. Layne, “Study of self-focusing damage in a high-power Nd:glass-rod amplifier,” Appl. Phys. Lett. 22, 467–469 (1973). [CrossRef]
  24. J. A. Fleck, J. R. Morris, E. S. Bliss, “Small-scale self-focusing effects in a high power glass laser amplifier,” IEEE J. Quantum Electron. QE-14, 353–363 (1978). [CrossRef]
  25. D. Milam, J. T. Hunt, K. R. Manes, W. H. Williams, “Modeling of filamentation damage induced in silica by 351-nm laser pulses,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 425–428 (1997).
  26. F. Y. Génin, L. M. Sheehan, J. Yoshiyama, J. Dijon, P. Garrec, “Statistical of UV-laser-induced failure of fused silica,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 155–163 (1998).
  27. A. Salleo, F. Y. Génin, J. Yoshiyama, C. J. Stolz, M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 341–347 (1998).
  28. F. Y. Génin, C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” in Third International Workshop on Laser Beam and Optics Characterization, A. Giesen, M. Morin, eds., Proc. SPIE2870, 439–448 (1996). [CrossRef]
  29. J. E. Swain, S. E. Stokowski, D. Milam, G. C. Kennedy, “The effect of baking and pulsed laser irradiation on the bulk laser damage threshold of potassium dihydrogen phosphate crystals,” Appl. Phys. Lett. 41, 12–14 (1982). [CrossRef]
  30. V. I. Salo, M. I. Kolybayeva, V. M. Puzikov, I. M. Pritula, V. G. Vasil’chuk, “The effect of impurities on the value of the bulk laser damage threshold of KDP single crystals,” in Optical Diagnosis of Materials and Devices for Opto-, Micro-, and Quantum Electronics, S. V. Svechnikov, M. Y. Valakh, eds., Proc. SPIE3359, 549–552 (1998).
  31. M. Runkel, B. Woods, Y. Ming, J. De Yoreo, M. Kozlowski, “Analysis of high resolution scatter images from laser damage experiments performed on KDP,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 185–195 (1996).
  32. V. I. Salo, L. V. Atroschenko, S. V. Garnov, N. V. Khodeyeva, “Structure, impurity composition and laser damage threshold of the subsurface layers in KDP and KD*P single crystals,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 197–201 (1996).
  33. F. Rainer, “Mapping and inspection of damage and artifacts in large-scale optics,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 272–281 (1998).
  34. R. P. Gonzales, D. Milam, “Evolution during multiple-shot irradiation of damage surrounding isolated platinum inclusions in phosphate laser glasses,” in Laser-Induced Damage in Optical Materials, Natl. Bur. Stand. (U.S.) Spec. Publ. 746, 128–137 (1985).
  35. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), Chaps. 4, 9, and 15.
  36. J. J. Bowman, T. B. A. Senior, P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes (Hemisphere, New York, 1987), Chap. 14.
  37. M. D. Feit, J. A. Fleck, “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998 (1978). [CrossRef] [PubMed]
  38. J. Yoshiyama, F. Y. Génin, A. Salleo, I. M. Thomas, M. R. Kozlowski, L. M. Sheehan, I. D. Hutcheon, D. W. Camp, “Effects of polishing, etching, cleaving, and water leaching on the UV laser damage of fused silica,” in Laser-Induced Damage in Optical Materials, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 331–340 (1998).
  39. M. Sekimoto, H. Yoshihara, T. Ohkubo, Y. Saitoh, “Silicon nitride single-layer X-ray mask,” Jpn. J. Appl. Phys. 20, L669–L672 (1981). [CrossRef]
  40. N. L. Boling, G. Dubé, “Morphological asymmetry in laser damage of transparent dielectric surfaces,” Appl. Phys. Lett. 21, 487–489 (1972). [CrossRef]
  41. V. I. Bespalov, V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” JETP Lett. 3, 307–310 (1966).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited