OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 21 — Jul. 20, 2000
  • pp: 3683–3690

Laser-induced incandescence for soot particle size measurements in premixed flat flames

Boman Axelsson, Robert Collin, and Per-Erik Bengtsson  »View Author Affiliations


Applied Optics, Vol. 39, Issue 21, pp. 3683-3690 (2000)
http://dx.doi.org/10.1364/AO.39.003683


View Full Text Article

Enhanced HTML    Acrobat PDF (106 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Measurements of soot properties by means of laser-induced incandescence (LII) and combined scattering–extinction were performed in well-characterized premixed ethylene–air flames. In particular, the possibility of using LII as a tool for quantitative particle sizing was investigated. Particle sizes were evaluated from the temporal decay of the LII signal combined with heat balance modeling of laser-heated particles, and these sizes were compared with the particle sizes deduced from scattering–extinction measurements based on isotropic sphere theory. The correspondence was good early in the soot-formation process but less good at later stages, possibly because aggregation to clusters began to occur. A critical analysis has been made of how uncertainties in different parameters, both experimental and in the model, affect the evaluated particle sizes for LII. A sensitivity analysis of the LII model identified the ambient-flame temperature as a major source of uncertainty in the evaluated particle size, a conclusion that was supported by an analysis based on temporal LII profiles.

© 2000 Optical Society of America

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(280.1740) Remote sensing and sensors : Combustion diagnostics
(280.2470) Remote sensing and sensors : Flames

History
Original Manuscript: September 24, 1999
Revised Manuscript: April 28, 2000
Published: July 20, 2000

Citation
Boman Axelsson, Robert Collin, and Per-Erik Bengtsson, "Laser-induced incandescence for soot particle size measurements in premixed flat flames," Appl. Opt. 39, 3683-3690 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-21-3683


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977). [CrossRef]
  2. L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984). [CrossRef] [PubMed]
  3. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994). [CrossRef]
  4. C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994). [CrossRef]
  5. B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994). [CrossRef]
  6. P.-E. Bengtsson, M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60, 51–59 (1995). [CrossRef]
  7. T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 43, 7083–7091 (1995). [CrossRef]
  8. R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 3, 1103–1107 (1995).
  9. S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 22, 2342–2344 (1995). [CrossRef]
  10. C. R. Shaddix, K. C. Smyth, “Laser-induced incandescencemeasurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996). [CrossRef]
  11. R. L. Vander Wal, “Onset of carbonization, spatial location via simultaneous LIF–LII and characterization via TEM,” Combust. Sci. Technol. 118, 343–360 (1996). [CrossRef]
  12. R. L. Vander Wal, “Soot precursor material: visualization via simultaneous LIF–LII and characterization via TEM,” in 26th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2269–2275. [CrossRef]
  13. B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997). [CrossRef] [PubMed]
  14. R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998). [CrossRef]
  15. M. Braun-Unkhoff, A. Chrysostomou, P. Frank, E. Gutheil, R. Lückerath, W. Stricker, “Experimental and numerical study on soot formation in laminar high pressure flames,” in 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1565–1572. [CrossRef]
  16. S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in 26th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 2277–2284.
  17. S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 24, 5647–5658 (1998). [CrossRef]
  18. R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary size be determined using laser-induced incandescence,” Combust. Flame 116, 291–296 (1999). [CrossRef]
  19. J. E. Dec, “A conceptual model of DI diesel combustion based on laser-sheet imaging,” in 1997 SAE International Congress and Exposition, Detroit, 24–27 1997 (Society of Automotive Engineers, Warrendale, PA 15096), paper 970873.
  20. M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in diesel engine exhaust using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996). [CrossRef]
  21. A. D’Alesso, A. Di Lorenzo, A. Borghese, F. Beretta, S. Masi, “Study of the soot nucleation zone of rich methane-oxygen flames,” in 16th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1977), pp. 695–708. [CrossRef]
  22. R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983). [CrossRef]
  23. P.-E. Bengtsson, M. Aldén, “Application of a pulsed laser for soot measurements in premixed flames,” Appl. Phys. B 48, 155–164 (1989). [CrossRef]
  24. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969).
  25. R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1615 (1998). [CrossRef]
  26. J. D. Black, “Laser induced incandescence measurements of particles in aero-engine exhausts,” in Environmental Sensing and Applications, M. Carleer, M. Hilton, T. Lamp, R. Reuter, G. M. Russwurm, K. Schaefer, K. Weber, K. Weitkamp, J. P. Wolf, L. Woppowa, eds., Proc. SPIE3821, 209–215 (1999). [CrossRef]
  27. R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996). [CrossRef] [PubMed]
  28. J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D.I. Diesel engine using 2-D laser-induced incandescence imaging,” in 1991 SAE International Congress and Exposition, Detroit, 25 February–1 March 1991 (Society of Automotive Engineers, Warrendale, PA 15096), paper 910224.
  29. P. N. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993). [CrossRef]
  30. P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996). [CrossRef]
  31. D. R. Snelling, G. J. Smallwood, Ö. L. Gülder, “Soot measurement with laser-induced incandescence,” presented at the International Energy Agency XIX Task Leaders Meeting on Energy Conservation and Emissions Reduction in Combustion, Capri, Italy, 14–17 September 1997.
  32. S. Prucker, W. Meier, W. Stricker, “A flat flame burner as calibration source for combustion research: temperature and species concentrations of premixed H2/air flames,” Rev. Sci. Instrum. 65, 2908–2911 (1994). [CrossRef]
  33. R. L. Vander Wal, “Calibration and comparison of laser-induced incandescence with cavity ring-down,” in 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 59–67. [CrossRef]
  34. E. D. Landolt-Börnstein, ed., “Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik (Springer-Verlag, Berlin, 1962).
  35. T. T. Charalampopoulus, H. Chang, B. Stagg, “The effects of temperature and composition on the complex refractive index of flame soot,” Fuel 68, 1173–1179 (1989). [CrossRef]
  36. F. Xu, B. Sunderland, G. M. Faeth, “Soot formation in laminar premixed ethylene/air flames at atmospheric pressure,” Combust. Flame 108, 471–493 (1997). [CrossRef]
  37. W. H. Dalzell, A. F. Sarofim, “Optical constants of soot and their application to heat-flux calculations,” J. Heat Transf. 91, 100–104 (1969). [CrossRef]
  38. P.-E. Bengtsson, L. Martinsson, M. Aldén, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992). [CrossRef]
  39. L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kroll, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993). [CrossRef]
  40. K. C. Smyth, C. R. Shaddix, “The elusive history of m = 1.57 - 0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996). [CrossRef]
  41. T. T. Charalampopoulus, J. D. Felske, “Refractive indices of soot particles deduced from in-situ laser light scattering measurements,” Combust. Flame 68, 283–294 (1987). [CrossRef]
  42. R. A. Dobbins, R. J. Santoro, H. G. Semerijan, “Interpretation of optical measurements of soot in flames,” Prog. Astronaut. Aeronaut. 92, 208–237 (1984).
  43. Ü. Ö. Köylü, C. S. McEnally, D. E. Rosner, L. D. Pfefferle, “Simultaneous measurements of soot volume fraction and particle size/microstructures in flames using a thermophoretic sampling technique,” Combust. Flame 110, 494–507 (1997). [CrossRef]
  44. S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited