OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 21 — Jul. 20, 2000
  • pp: 3691–3703

Measurement of the Refractive Indices of H2SO4-HNO3-H2O Solutions to Stratospheric Temperatures

Ulrich K. Krieger, Juliane C. Mössinger, Beiping Luo, Uwe Weers, and Thomas Peter  »View Author Affiliations

Applied Optics, Vol. 39, Issue 21, pp. 3691-3703 (2000)

View Full Text Article

Acrobat PDF (161 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Refractive indices of various H<sub>2</sub>SO<sub>4</sub>–H<sub>2</sub>O, HNO<sub>3</sub>–H<sub>2</sub>O, and H<sub>2</sub>SO<sub>4</sub>–HNO<sub>3</sub>–H<sub>2</sub>O solutions were measured at four wavelengths in the visible (351.0, 533.5, 632.9, and 782.6 nm) over a temperature range from 30 to −60 °C. The temperature dependence has been determined for the first time to the authors’ knowledge. This dependence is of importance for applications to atmospheric aerosols at low temperatures. In particular, it is shown that (1) the molar refractivity of the solutions is independent of temperature, whereas the temperature dependence of the refractive index arises solely through the temperature dependence of the solution’s mass density, (2) the molar refractivities of H<sub>2</sub>SO<sub>4</sub> and HNO<sub>3</sub> in a ternary solution may be calculated as the weighted sum of the molar refractivities of two binary solutions evaluated at a concentration that corresponds to the total acid concentration, and (3) the H<sub>2</sub>O molar refractivity in the solutions may be taken equal to that of pure water. Although the data for the ternary system have been used for this model verification, data for binary H<sub>2</sub>SO<sub>4</sub>–H<sub>2</sub>O and HNO<sub>3</sub>–H<sub>2</sub>O solutions were used to improve the accuracy of the modeled refractive indices to better than 0.0017% or 0.15% for concentrations of 5–70 wt.% and wavelengths from the near ultraviolet to the near infrared (0.25–2 μm).

© 2000 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(160.4760) Materials : Optical properties
(280.1100) Remote sensing and sensors : Aerosol detection

Ulrich K. Krieger, Juliane C. Mössinger, Beiping Luo, Uwe Weers, and Thomas Peter, "Measurement of the Refractive Indices of H2SO4-HNO3-H2O Solutions to Stratospheric Temperatures," Appl. Opt. 39, 3691-3703 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. E. Dye, B. W. Gandrud, D. Baumgardner, K. R. Chan, G. V. Ferry, M. Loewenstein, K. K. Kelly, and J. C. Wilson, “Observed particle evolution in the polar stratospheric cloud of January 24 1989,” Geophys. Res. Lett. 17, 413–415 (1990).
  2. T. Sugita, Y. Kondo, M. Koike, M. Kanada, N. Toriyama, H. Nakajima, T. Deshler, and R. Imasu, “Balloon-borne optical counter for in situ aerosol measurements,” J. Amos. Chem. 32, 183–204 (1999).
  3. N. Larsen, I. S. Mikkelsen, B. M. Knudsen, J. Schreiner, C. Voigt, K. Mauersberger, J. M. Rosen, and N. T. Kjome, “Comparison of chemical and optical in situ measurements of polar stratospheric clouds,” J. Geophys. Res. 105, 1491–1502 (2000).
  4. D. Baumgardner, J. E. Dye, B. Gandrud, K. Barr, K. Kelly, and K. Chan, “Refractive indices of aerosols in the upper troposphere and lower stratosphere,” Geophys. Res. Lett. 23, 749–752 (1996).
  5. E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Schoeberl, and A. F. Tuck, “Airborne lidar observations in the wintertime Arctic stratosphere: polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
  6. G. Beyerle, B. P. Luo, R. Neuber, Th. Peter, and I. S. McDermid, “Temperature dependence of ternary solution particle volumes by lidar in the Arctic stratosphere during winter 1992/1993,” J. Geophys. Res. 102, 3603–3609 (1997).
  7. M. Pantani, M. Del Guasta, D. Guzzi, and L. Stefanutti, “Polar stratospheric clouds of liquid aerosol: an experimental determination of mean size distribution,” J. Aerosol Sci. 30, 559–567 (1999).
  8. G. K. Yue, L. R. Poole, P.-H. Wang, and E. W. Chiou, “Stratospheric aerosol acidity, density and refractive index deduced from SAGE II and NMC temperature data,” J. Geophys. Res. 99, 3727–3738 (1994).
  9. M. E. Hervig and T. Deshler, “Stratospheric aerosol surface area and volume inferred from HALOE, CLAES, and ILAS measurements,” J. Geophys. Res. Atmos. D 103, 25,345–25,352 (1998).
  10. World Meteorological Organization, “Scientific Assessment of Ozone Depletion: 1998,” Global Ozone Research and Monitoring Project Rep. 44 (WMO, Geneva, 1999).
  11. R. T. Tisdale, D. L. Glandorf, M. A. Tolbert, and O. B. Toon, “Infrared optical constants of low temperature H2SO4 solutions representative of stratospheric sulfate aerosols,” J. Geophys. Res. Atmos. 103, 25,353–25,370 (1998).
  12. U. K. Krieger, U. Weers, and Th. Peter, “Using Mie-scattering resonances for determination of composition and radii of ternary droplets,” in Polar Stratospheric Ozone, J. A. Pyle, N. R. P. Harris, and G. T. Amanatidis, eds., Rep. 56 (Commission of the European Communities, Brussels, 1996).
  13. K. S. Carslaw, B. P. Luo, S. L. Clegg, Th. Peter, P. Brimblecombe, and P. J. Crutzen, “Stratospheric aerosol growth and HNO3 gas phase depletion from coupled HNO3 and water uptake by liquid particles,” Geophys. Res. Lett. 21, 2479–2482 (1994).
  14. A. Tabazadeh, R. P. Turco, K. Drdla, M. Z. Jacobson, and O. B. Toon, “A study of type I polar stratospheric cloud formation,” Geophys. Res. Lett. 21, 1619–1622 (1994).
  15. J. Schreiner, C. Voigt, A. Kohlmann, F. Arnold, K. Mauersberger, and N. Larsen, “Chemical analysis of polar stratospheric cloud particles,” Science 283, 968–970 (1999).
  16. K. D. Beyer, A. R. Ravishankara, and E. R. Lovejoy, “Measurements of UV refractive indices and densities of H2SO4/H2O and H2SO4/HNO3/H2O solutions,” J. Geophys. Res. Atmos. 101, 14,519–14,524 (1996).
  17. K. F. Palmer and D. Williams, “Optical constants of sulfuric acid: application to the clouds of Venus?” Appl. Opt. 14, 208–219 (1975).
  18. K. H. Hellwege and A. M. Hellwege, “Optische Konstanten,” in Chemie, Astronomie, Geophysik, Technik, Vol. II8 of Landolt–Börnstein Zahlenwerte und Funktionen für Physik (Springer-Verlag, Berlin, 1962), p. 901.
  19. A. Haentzsch and F. Dürigen, “Über die chemische Veränderung von Säuren und Salzen in Lösung auf Grund refraktometrischer Daten,” Z. Phys. Chem. 134, 413–452 (1928), 136, 1–17 (1928).
  20. R. Lühdemann, “Über die Konzentrationsabhängigkeit der Äquivalentrefraktion einiger Salze und Säuren in wässriger Lösung,” Z. Phys. Chem. B 29, 133–149 (1935).
  21. B. Luo, U. K. Krieger, and Th. Peter, “Densities and refractive indices of H2SO4/HNO3/H2O solutions to stratospheric temperatures,” Geophys. Res. Lett. 23, 3707–3710 (1996).
  22. K. N. Marsh, ed., “Recommended Reference Materials for the Realization of Physico-Chemical Properties” (Blackwell Scientific, Oxford, 1987).
  23. I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
  24. T. E. Smith and R. F. Bonner, “Refractive index-temperature data for anhydrous ethyl alcohol,” Anal. Chem. 24, 517–518 (1952).
  25. M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1959), pp. 803.
  26. A copy of the fortran code (or alternatively a java code) can be obtained from the authors. Send an email to krieger@atmos.umnw.ethz.ch.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited