OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 21 — Jul. 20, 2000
  • pp: 3691–3703

Measurement of the refractive indices of H2SO4–HNO3–H2O solutions to stratospheric temperatures

Ulrich K. Krieger, Juliane C. Mössinger, Beiping Luo, Uwe Weers, and Thomas Peter  »View Author Affiliations


Applied Optics, Vol. 39, Issue 21, pp. 3691-3703 (2000)
http://dx.doi.org/10.1364/AO.39.003691


View Full Text Article

Enhanced HTML    Acrobat PDF (161 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Refractive indices of various H2SO4–H2O, HNO3–H2O, and H2SO4–HNO3–H2O solutions were measured at four wavelengths in the visible (351.0, 533.5, 632.9, and 782.6 nm) over a temperature range from 30 to -60 °C. The temperature dependence has been determined for the first time to the authors’ knowledge. This dependence is of importance for applications to atmospheric aerosols at low temperatures. In particular, it is shown that (1) the molar refractivity of the solutions is independent of temperature, whereas the temperature dependence of the refractive index arises solely through the temperature dependence of the solution’s mass density, (2) the molar refractivities of H2SO4 and HNO3 in a ternary solution may be calculated as the weighted sum of the molar refractivities of two binary solutions evaluated at a concentration that corresponds to the total acid concentration, and (3) the H2O molar refractivity in the solutions may be taken equal to that of pure water. Although the data for the ternary system have been used for this model verification, data for binary H2SO4–H2O and HNO3–H2O solutions were used to improve the accuracy of the modeled refractive indices to better than 0.0017% or 0.15% for concentrations of 5–70 wt. % and wavelengths from the near ultraviolet to the near infrared (0.25–2 µm).

© 2000 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(160.4760) Materials : Optical properties
(280.1100) Remote sensing and sensors : Aerosol detection

History
Original Manuscript: October 14, 1999
Revised Manuscript: April 18, 2000
Published: July 20, 2000

Citation
Ulrich K. Krieger, Juliane C. Mössinger, Beiping Luo, Uwe Weers, and Thomas Peter, "Measurement of the refractive indices of H2SO4–HNO3–H2O solutions to stratospheric temperatures," Appl. Opt. 39, 3691-3703 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-21-3691

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited