OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 21 — Jul. 20, 2000
  • pp: 3704–3711

Flow characterization of a diamond-depositing dc arcjet by laser-induced fluorescence

Wolfgang Juchmann, Jorge Luque, and Jay B. Jeffries  »View Author Affiliations


Applied Optics, Vol. 39, Issue 21, pp. 3704-3711 (2000)
http://dx.doi.org/10.1364/AO.39.003704


View Full Text Article

Enhanced HTML    Acrobat PDF (615 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced fluorescence (LIF) measurements of seeded nitric oxide and naturally occurring species in a diamond-depositing dc arcjet of hydrogen/argon/methane (0.8:1.0:0.005) at 25 Torr are used to determine the temperature and velocity fields in a gas jet. LIF measurements are also used to demonstrate the importance of gas recirculation on the chemical composition of the arcjet plume. The gas flow in the arcjet plume is supersonic, with a maximum axial speed of 2.6 km/s at the center of the nozzle exit. This axial velocity decreases with radius with a parabolic distribution in the plume. There is no measurable radial velocity in the free stream of the arcjet plume, and the radial expansion of the plume is consistent with diffusion. The maximum temperature at the plume center is 2400 K and varies less than 15% with chamber pressures of 10–50 Torr. The substrate is placed in the arcjet plume normally to the directed velocity, producing a stagnation point. The gas temperature above this stagnation point is observed to rise abruptly as a consequence of the supersonic shock. The radial velocity near the stagnation point becomes significant, and a maximum radial velocity of 1300 m/s is determined.

© 2000 Optical Society of America

OCIS Codes
(280.2490) Remote sensing and sensors : Flow diagnostics
(300.2530) Spectroscopy : Fluorescence, laser-induced
(310.3840) Thin films : Materials and process characterization

History
Original Manuscript: November 15, 1999
Revised Manuscript: April 14, 2000
Published: July 20, 2000

Citation
Wolfgang Juchmann, Jorge Luque, and Jay B. Jeffries, "Flow characterization of a diamond-depositing dc arcjet by laser-induced fluorescence," Appl. Opt. 39, 3704-3711 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-21-3704


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. F. Bahr, D. V. Bucci, L. S. Schadler, J. A. Last, J. Heberlein, E. Pfender, W. W. Gerberich, “Characterization of dc-jet CVD films on molybdenum,” Diamond Relat. Mater. 5, 1462–1472 (1996). [CrossRef]
  2. V. Bohm, V. Buck, M. Liesenfeld, T. Naubert, J. Zeng, “Influence of plasma parameters on the properties of diamond films deposited by the dc arc technique,” Diamond Relat. Mater. 4, 33–42 (1994). [CrossRef]
  3. D. W. Park, J. S. Yun, “Structural characterization of diamond thin films prepared by plasma jet,” Thin Solid Films 345, 60–66 (1999). [CrossRef]
  4. F. J. Grunthaner, R. Bicknell-Tassius, P. Deelman, P. J. Grunthaner, C. Bryson, E. Snyder, J. L. Giuliani, J. P. Apruzese, P. Kepple, “Ultrahigh vacuum arcjet nitrogen source for selected energy epitaxy of group III nitrides by molecular beam epitaxy,” J. Vac. Sci. Technol. A 16, 1615–1620 (1998). [CrossRef]
  5. W. Ho, L. J. Lauhon, S. A. Ustin, “Large area supersonic jet epitaxy of AlN, GaN, and SiC on silicon,” Mater. Res. Soc. Symp. Proc. 449, 227–232 (1997).
  6. I. J. Wysong, J. A. Pobst, “Quantitative two-photon laser-induced fluorescence of hydrogen atoms in a 1-kW arcjet thruster,” Appl. Phys. B. 67, 193–205 (1998). [CrossRef]
  7. M. W. Crofton, R. P. Welle, S. W. Janson, R. B. Cohen, “Temperature, velocity and density studies in the 1-kW ammonia arcjet plume by LIF,” paper AIAA-92-3241, presented at the 28th Joint Propulsion Conference, Nashville, Tenn., 6–8 July 1992 (American Institute of Aeronautics and Astronautics, Reston, Va., 1992).
  8. E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc arcjet reactor used for diamond deposition,” Appl. Phys. B 64, 689–697 (1997). [CrossRef]
  9. D. G. Fletcher, “Arcjet flow properties determined from laser-induced fluorescence of atomic nitrogen,” Appl. Opt. 38, 1850–1858 (1999). [CrossRef]
  10. W. Juchmann, J. Luque, J. B. Jeffries, “Atomic hydrogen concentration in a diamond depositing dc-arcjet determined by calorimetry,” J. Appl. Phys. 81, 8052–8056 (1997). [CrossRef]
  11. J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Laser-induced fluorescence diagnostic for temperature and velocity measurements in a hydrogen arcjet plume,” Appl. Opt. 32, 6117–6127 (1993). [CrossRef] [PubMed]
  12. J. Luque, W. Juchmann, J. B. Jeffries, “Spatial density distributions of C2, C3 and CH radicals by laser-induced fluorescence in a diamond depositing dc-arcjet,” J. Appl. Phys. 82, 2072–2081 (1997). [CrossRef]
  13. P. V. Storm, M. A. Cappelli, “Fluorescence velocity measurements in the interior of a hydrogen arcjet nozzle,” AIAA J. 34, 853–855 (1995). [CrossRef]
  14. G. A. Raiche, J. B. Jeffries, “Observation and spatial distributions of C3 in a dc arcjet plasma during diamond deposition using laser-induced fluorescence,” Appl. Phys. B 65, 593–597 (1997). [CrossRef]
  15. G. A. Raiche, J. B. Jeffries, “Laser-induced fluorescence temperature measurements in a dc-arcjet used for diamond deposition,” Appl. Opt. 32, 4629–4635 (1993). [CrossRef] [PubMed]
  16. J. Luque, W. Juchmann, J. B. Jeffries, “Absolute concentration measurements of CH radicals in a diamond-depositing dc-arcjet reactor,” Appl. Opt. 36, 3261–3270 (1997). [CrossRef] [PubMed]
  17. P. V. Storm, M. A. Cappelli, “Radiative emission analysis of an expanding hydrogen arc plasma. I. Arc region diagnostics through axial emission,” J. Quant. Spectrosc. Radiat. Transfer 56, 901–918 (1996). [CrossRef]
  18. P. V. Storm, M. A. Cappelli, “Radiative emission analysis of an expanding hydrogen arc plasma. II. Plume region diagnostics through radial emission,” J. Quant. Spectrosc. Radiat. Transfer 56, 919–932 (1996). [CrossRef]
  19. J. C. Cubertafon, M. Chenevier, A. Campargue, G. Verven, T. Priem, “Emission spectroscopy diagnostics of a d.c. plasma jet diamond reactor,” Diamond Relat. Mater. 4, 350–356 (1995). [CrossRef]
  20. J. Luque, W. Juchmann, E. A. Brinkmann, J. B. Jeffries, “Excited state density distributions of H, C, C2, and CH by spatially resolved optical emission in a diamond depositing dc-arcjet reactor,” J. Vac. Sci. Technol. A 16, 397–408 (1998). [CrossRef]
  21. S. W. Reeve, W. A. Weimer, “Plasma diagnostics of a direc-current arcjet diamond reactor. II. Optical emission spectroscopy,” J. Vac. Sci. Technol. A 13, 359–367 (1995). [CrossRef]
  22. F. Y. Zhang, K. Komurasaki, T. Lida, T. Fujiwara, “Diagnostics of an argon arcjet plume with a diode laser,” Appl. Opt. 38, 1814–1822 (1999). [CrossRef]
  23. W. Juchmann, J. Luque, J. Wolfrum, J. B. Jeffries, “Absolute concentration, temperature, and velocity measurements in a diamond depositing dc-arcjet reactor,” Diamond Relat. Mater. 7, 165–169 (1998). [CrossRef]
  24. J. Luque, D. R. Crosley, LIFBASE, v. 1.61 [SRI International, MP-99-0099, ( www.sri.com/cem/lifbase ), 1999].
  25. W. Juchmann, J. Luque, J. B. Jeffries, “Two-photon LIF of H atoms in a dc-arcjet,” Appl. Phys. B (to be published).
  26. J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation effects in the A, B, and C states of CH and the interstellar formation rate of CH via inverse predissociation,” Astrophys. J. 207, 414–424 (1976). [CrossRef]
  27. C. Naulin, M. Costes, G. Dorthe, “C2 radicals in a supersonic molecular beam. Radiative lifetime of the d state measured by laser-induced fluorescence,” Chem. Phys. Lett. 143, 496–500 (1988). [CrossRef]
  28. K. H. Becker, T. Tatarczyk, J. Radic-Peric, “Lifetime measurements of electronically excited C3 radicals in different vibrational states,” Chem. Phys. Lett. 60, 502–506 (1979). [CrossRef]
  29. J. Luque, D. R. Crosley, “Transition probabilities and electronic transition moments of the A–X and D–X systems of nitric oxide,” J. Chem. Phys. 111, 7405–7415 (1999). [CrossRef]
  30. P. J. Knowles, H. Werner, P. J. Hay, D. C. Cartwright, “The A–X red and B–X violet systems of the CN radical: accurate multi-reference configuration interaction calculations of the radiative transition probabilities,” J. Chem. Phys. 89, 7334–7343 (1988). [CrossRef]
  31. J. Bittner, K. Kohes-Hoinghaus, U. Meier, T. Just, “Quenching of two-photon-excited H (3s, 3d) and O (3p) atoms by rare gas atoms and small molecules,” Chem. Phys. Lett. 143, 571–576 (1988). [CrossRef]
  32. W. H. Press, W. T. Vettering, S. A. Teukolsky, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992).
  33. A. J. Dean, R. K. Hanson, C. T. Bowman, “C + NO reaction,” J. Phys. Chem. 95, 3180–3189 (1991). [CrossRef]
  34. S. T. Wooldridge, R. K. Hanson, C. T. Bowman, “CN + H2 reaction,” Int. J. Chem. Kinet. 28, 245–258 (1996). [CrossRef]
  35. C. D. Moen, H. A. Dwyer, “Numerical simulation of supersonic internal flow for an arc-heated chemical vapor deposition reactor,” AIAA-95-2208, presented at the 26th Fluid Dynamics Conference, San Diego, Calif., 19–22 June 1995 (American Institute for Aeronautics and Astronautics, Reston, Va., 1995), pp. 1–11.
  36. S. W. Reeve, W. A. Weimer, F. M. Cerio, “Gas phase chemistry in a direct current plasma jet diamond reactor,” J. Appl. Phys. 74, 7521–7530 (1993). [CrossRef]
  37. C. D. Moen, H. A. Dwyer, “Numerical simulation of chemical kinetics in a supersonic chemical vapor deposition reactor,” paper AIAA-95-1676, presented at the Twelfth Computational Fluid Mechanics Conference, San Diego, Calif., 19–22 June 1995 (American Institute for Aeronautics and Astronautics, Reston, Va., 1995), pp. 1–11.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited