OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 21 — Jul. 20, 2000
  • pp: 3738–3745

Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles

Paul H. Kaye, John E. Barton, Edwin Hirst, and James M. Clark  »View Author Affiliations


Applied Optics, Vol. 39, Issue 21, pp. 3738-3745 (2000)
http://dx.doi.org/10.1364/AO.39.003738


View Full Text Article

Enhanced HTML    Acrobat PDF (754 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a prototype laboratory light-scattering instrument that integrates two approaches to airborne particle characterization: spatial light-scattering analysis and intrinsic fluorescence measurement, with the aim of providing an effective means of classifying biological particles within an ambient aerosol. The system uses a single continuous-wave 266-nm ultraviolet laser to generate both the spatial elastic scatter data (from which an assessment of particle size and shape is made) and the particle intrinsic fluorescence data from particles in the approximate size range of 1–10-µm diameter carried in a sample airflow through the laser beam. Preliminary results suggest that this multiparameter measurement approach can provide an effective means of classifying different particle types and can reduce occurrences of false-positive detection of biological aerosols.

© 2000 Optical Society of America

OCIS Codes
(120.1880) Instrumentation, measurement, and metrology : Detection
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(290.1090) Scattering : Aerosol and cloud effects
(290.5820) Scattering : Scattering measurements
(300.2530) Spectroscopy : Fluorescence, laser-induced

History
Original Manuscript: November 22, 1999
Revised Manuscript: April 4, 2000
Published: July 20, 2000

Citation
Paul H. Kaye, John E. Barton, Edwin Hirst, and James M. Clark, "Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles," Appl. Opt. 39, 3738-3745 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-21-3738


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23, 653–664 (1995). [CrossRef]
  2. P. Nachman, G. Chen, R. G. Pinnick, S. C. Hill, R. K. Chang, M. W. Mayo, G. L. Fernandez, “Condition sampling spectrograph detection system for fluorescent measurements of individual airborne biological particles,” Appl. Opt. 35, 1069–1076 (1996). [CrossRef] [PubMed]
  3. G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, R. K. Chang, “Conditional-firing aerosol-fluorescence spectrum analyzer for individual airborne particles with pulsed 266-nm laser excitation,” Opt. Lett. 21, 1307–1309 (1996). [CrossRef] [PubMed]
  4. Y. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or 266-nm ultraviolet laser,” Opt. Lett. 24, 116–118 (1999). [CrossRef]
  5. P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28, 471–482 (1997). [CrossRef] [PubMed]
  6. M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999). [CrossRef]
  7. S. Holler, Y. Pan, R. K. Chang, J. R. Bottiger, S. C. Hill, D. B. Hillis, “Two-dimensional angular optical scattering for the characterization of airborne microparticles,” Opt. Lett. 23, 1489–1491 (1998). [CrossRef]
  8. W. D. Dick, P. J. Ziemann, P.-F. Huang, P. H. McMurray, “Optical shape fraction measurements of submicrometre laboratory and atmospheric aerosols,” Meas. Sci. Technol. 9, 183–196 (1998). [CrossRef]
  9. B. Sachweh, H. Barthel, R. Polke, H. Umhauer, H. Buttner, “Particle shape and structure analysis from the spatial intensity pattern of scattered light using different measuring devices,” J. Aerosol Sci. 30, 1257–1270 (1999). [CrossRef]
  10. E. Hirst, P. H. Kaye, J. R. Guppy, “Light scattering from nonspherical airborne particles: experimental and theoretical comparisons,” Appl. Opt. 33, 7180–7186 (1994). [CrossRef] [PubMed]
  11. E. Hirst, P. H. Kaye, “Experimental and theoretical light scattering profiles from spherical and non-spherical particles,” J. Geophys. Res. D 101, 19,231–19,235 (1996). [CrossRef]
  12. P. H. Kaye, “Spatial light scattering as a means of characterising and classifying non-spherical particles,” Meas. Sci. Technol. 9, 141–149 (1998). [CrossRef]
  13. P. H. Kaye, K. Alexander-Buckley, E. Hirst, S. Saunders, “A real-time monitoring system for airborne particle shape and size analysis,” J. Geophys. Res. D 101, 19,215–19,221 (1996). [CrossRef]
  14. E. Hirst, P. H. Kaye, Z. Wang-Thomas, “Neural-network-based spatial light-scattering instrument for hazardous airborne fiber detection,” Appl. Opt. 36, 6149–6156 (1997). [CrossRef] [PubMed]
  15. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited