OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 21 — Jul. 20, 2000
  • pp: 3774–3780

Frequency-Modulation Spectroscopy with Blue Diode Lasers

Ulf Gustafsson, Gabriel Somesfalean, Janis Alnis, and Sune Svanberg  »View Author Affiliations


Applied Optics, Vol. 39, Issue 21, pp. 3774-3780 (2000)
http://dx.doi.org/10.1364/AO.39.003774


View Full Text Article

Acrobat PDF (108 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Frequency-modulation spectroscopy provides ultrasensitive absorption measurements. The technique is especially adaptable to diode lasers, which can be modulated easily, and has been used extensively in the near-infrared and infrared spectral regions. The availability of blue diode lasers now means that the accessible wavelength region can be increased. We successfully demonstrate wavelength-modulation spectroscopy and two-tone frequency-modulation spectroscopy for the weak second resonance line of potassium at 404.8 nm and for the transition at 405.8 nm in lead, starting from the thermally populated 6<i><sub>p</sub></i><sup>2 3</sup><i>P</i><sub>2</sub> metastable level. Information on the modulation parameters is obtained with a fitting procedure. Experimental signal-to-noise ratios at different absorption levels are compared with theoretical signal-to-noise ratios and show good agreement. Detection sensitivities of 2 × 10<sup>−6</sup> and 5 × 10<sup>−6</sup> for wavelength and two-tone frequency-modulation spectroscopy, respectively, for a 120-Hz bandwidth are demonstrated.

© 2000 Optical Society of America

OCIS Codes
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6380) Spectroscopy : Spectroscopy, modulation

Citation
Ulf Gustafsson, Gabriel Somesfalean, Janis Alnis, and Sune Svanberg, "Frequency-Modulation Spectroscopy with Blue Diode Lasers," Appl. Opt. 39, 3774-3780 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-21-3774


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. Werle, R. Mücke, F. D. Amato, and T. Lancia, “Near-infrared trace-gas sensor based on room-temperature diode lasers,” Appl. Phys. B 67, 307–315 (1998).
  2. G. Modugno, C. Corsi, M. Gabrysch, and M. Inguscio, “Detection of H2S at ppm level using a telecommunication diode laser,” Opt. Commun. 145, 76–80 (1998).
  3. H. Riris, C. B. Carlisle, D. F. McMillen, and D. E. Cooper, “Explosives detection with a frequency modulation spectrometer,” Appl. Opt. 35, 4694–4704 (1996).
  4. J. A. Silver, D. J. Kane, and P. S. Greenberg, “Quantitative species measurements in microgravity flames with near-IR diode lasers,” Appl. Opt. 34, 2787–2801 (1995).
  5. P. Kauranen, H. M. Hertz, and S. Svanberg, “Tomographic imaging of fluid flows by the use of two-tone frequency-modulation spectroscopy,” Opt. Lett. 19, 1489–1491 (1994).
  6. P. Kauranen, I. Harwigsson, and B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994).
  7. E. G. Moses and C. L. Tang, “High sensitivity laser wavelength modulation spectroscopy,” Opt. Lett. 1, 115–117 (1977).
  8. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
  9. G. R. Janik, C. B. Carlisle, and T. F. Gallagher, “Two-tone frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 3, 1070–1074 (1986).
  10. D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
  11. F. S. Pavone and M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using and AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
  12. D. E. Cooper, R. U. Martinelli, C. B. Carlisle, H. Riris, D. B. Bour, and R. J. Menna, “Measurement of 12CO2: 13CO2 ratios for medical diagnostics with 1.6-μm distributed-feedback semiconductor diode lasers,” Appl. Opt. 32, 6727–6731 (1993).
  13. G. Modugno, C. Corsi, M. Gabrysch, F. Marin, and M. Inguscio, “Fundamental noise sources in a high-sensitivity two-tone frequency modulation spectrometer and detection of CO2 at 1.6 μm and 2 μm,” Appl. Phys. B 67, 289–296 (1998).
  14. C. B. Carlisle, D. E. Cooper, and H. Preier, “Quantum noise-limited FM spectroscopy with a lead-salt diode laser,” Appl. Opt. 28, 2567–2576 (1989).
  15. C. B. Carlisle and D. E. Cooper, “Tunable-diode-laser frequency-modulation spectroscopy using balanced homodyne detection,” Opt. Lett. 14, 1306–1308 (1989).
  16. P. Werle, F. Slemr, M. Gehrtz, and C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
  17. M. Gehrtz, G. C. Bjorklund, and E. A. Whittaker, “Quantum-limited laser frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 2, 1510–1526 (1985).
  18. S. Nakamura and G. Fasol, The Blue Laser Diodes (Springer-Verlag, Heidelberg, 1997).
  19. U. Gustafsson, J. Alnis, and S. Svanberg, “Atomic spectroscopy with violet laser diodes,” Am. J. Phys. (to be published).
  20. P. Kauranen and V. G. Avetisov, “Determination of absorption line parameters using two-tone frequency-modulation spectroscopy with diode lasers,” Opt. Commun. 106, 213–217 (1994).
  21. V. G. Avetisov and P. Kauranen, “High-resolution absorption measurements using two-tone frequency-modulation spectroscopy with diode lasers,” Appl. Opt. 36, 4043–4054 (1997).
  22. V. G. Avetisov and P. Kauranen, “Two-tone frequency-modulation spectroscopy for quantitative measurements of gaseous species: theoretical, numerical, and experimental investigation of line shapes,” Appl. Opt. 35, 4705–4723 (1996).
  23. E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
  24. D. E. Cooper and R. E. Warren, “Frequency modulation spectroscopy with lead-salt diode lasers: a comparison of single-tone and two-tone techniques,” Appl. Opt. 26, 3726–3732 (1987).
  25. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
  26. J. M. Supplee, E. A. Whittaker, and W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1993).
  27. W. Lenth, “High frequency heterodyne spectroscopy with current-modulated diode lasers,” IEEE J. Quantum Electron. QE-20, 1045–1050 (1984).
  28. S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
  29. M. Osinski and J. Buus, “Linewidth broadening factors in semiconductor lasers: an overview,” IEEE J. Quantum Electron. QE-23, 9–29 (1987).
  30. J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited