OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 22 — Aug. 1, 2000
  • pp: 3940–3944

Carbon aerogel: a new nonreflective material for the infrared

Steven R. Meier, Michelle L. Korwin, and Celia I. Merzbacher  »View Author Affiliations


Applied Optics, Vol. 39, Issue 22, pp. 3940-3944 (2000)
http://dx.doi.org/10.1364/AO.39.003940


View Full Text Article

Enhanced HTML    Acrobat PDF (315 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present directional hemispherical reflectance (DHR) and bidirectional reflectance distribution function (BRDF) measurements of a carbon aerogel in the 2.5–14.3-µm infrared spectral region. The measured DHR is 1.0–1.2 ± 0.2% throughout the 2.5–14.3-µm infrared wavelength region. When the incidence angle is increased from 8° to 30° off normal, the DHR increases by only 0.2%; i.e., performance does not significantly degrade as a result of illumination by off-normal infrared radiation. BRDF measurements, obtained at a wavelength of 10.6 µm, indicate that carbon aerogel exhibits Lambertian behavior. The carbon aerogel’s BRDF value of 4 × 10-3 sr-1 is consistent with its measured DHR values. Gas adsorption and transmission-electron microscopy indicate a structure dominated by particles and pores of ≤10-nm dimension. Scanning-electron microscopy reveals surface roughness on a scale of tens of nanometers. The DHR and BRDF of carbon aerogel compare favorably with those of Martin Black and Rippey, two widely used nonreflective materials.

© 2000 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(290.5820) Scattering : Scattering measurements
(290.5880) Scattering : Scattering, rough surfaces

History
Original Manuscript: March 14, 2000
Revised Manuscript: April 21, 2000
Published: August 1, 2000

Citation
Steven R. Meier, Michelle L. Korwin, and Celia I. Merzbacher, "Carbon aerogel: a new nonreflective material for the infrared," Appl. Opt. 39, 3940-3944 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-22-3940


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. Pompea, R. P. Breault, Handbook of Optics II (McGraw-Hill, New York, 1995), Chap. 37.
  2. M. J. Persky, “Review of black surfaces for space-borne infrared systems,” Rev. Sci. Instrum. 70, 2193–2217 (1999). [CrossRef]
  3. K. A. Snail, D. P. Brown, J. Costantino, W. C. Shemano, C. W. Schmidt, W. F. Lynn, C. L. Seaman, T. R. Knowles, “Optical characterization of black appliqués,” in Optical System Contamination V and Stray Light and System Optimization, A. P. M. Glassford, R. P. Breault, S. M. Pompea, eds., Proc. SPIE2864, 465–474 (1996). [CrossRef]
  4. W. Becker, R. Fettig, W. Ruppel, “Optical and electrical properties of black gold layers in the far infrared,” Infrared Phys. Technol. 40, 431–445 (1999). [CrossRef]
  5. C. Jäger, Th. Henning, R. Schlogl, O. Spillecke, “Spectral properties of carbon black,” J. Non-Cryst. Solids 258, 161–179 (1999). [CrossRef]
  6. R. W. Pekala, “Organic aerogels from the polycondensation of resorcinol with formaldehyde,” J. Mater. Sci. 24, 3221–3227 (1989). [CrossRef]
  7. R. W. Pekala, D. W. Schaefer, “Structure of organic aerogels. 1. Morphology and Scaling,” Macromolecules 26, 5487–5493 (1993). [CrossRef]
  8. R. W. Pekala, C. T. Alviso, F. M. Kong, S. S. Hulsey, “Aerogels derived from multifunctional organic monomers,” J. Non-Cryst. Solids 145, 90–98 (1992). [CrossRef]
  9. Lockheed Martin Astronautics Group, Mail Stop B3085, P.O. Box 179, Denver, Colo. 80201; Attn: Dan Sheld.
  10. Rippey Corporation, 5000 Hillsdale Circle, El Dorado Hills, Calif. 95762.
  11. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, T. Limperis, “Geometric considerations and nomenclature for reflectance,” Natl. Bur. Stand. (U.S.) Monogr. 160, (1977).
  12. S. M. Pompea, D. F. Shepard, S. Anderson, “The effect of elevated temperatures on the scattering properties of an optical black surface at 0.6328 and 10.6 micrometers,” in Stray Light and Contamination in Optical Systems, R. Breault ed., Proc. SPIE967, 286–291 (1988).
  13. J. C. Stover, Optical Scattering: Measurement and Analysis (SPIE, Bellingham, Wash., 1995), p. 202.
  14. R. W. Pekala, C. T. Alviso, “Carbon aerogels and xerogels,” Mater. Res. Soc. Symp. Proc. 270, 3–14 (1992). [CrossRef]
  15. Data are available from C. I. Merzbacher (merzbacher@nrl.navy.mil).
  16. A. L. Shumway, D. F. Shepard, R. E. Clement, P. McKenna, “Temperature effects on reflectance and emittance measurements of Martin Black and Enhanced Martin Black surfaces,” in Optical System Contamination V and Stray Light and System Optimization, A. P. M. Glassford, R. P. Breault, S. M. Pompea, eds., Proc. SPIE2864, 386–405 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited