Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Theory of the radiation of dipoles placed within a multilayer system

Not Accessible

Your library or personal account may give you access

Abstract

A rigorous theory of radiation from dipoles embedded inside an arbitrary multilayer system is presented. In particular, we derive explicit expressions for the angular distribution of the electromagnetic field and the intensity radiated by the dipole into the surrounding media. Under the assumptions of mutual incoherence of the dipole radiation the calculations are extended to a layer of radiating dipoles. Special configurations corresponding to (i) a single dipole near a dielectric interface, (ii) a dipole layer surrounded by semi-infinite dielectric media, and (iii) a dipole layer placed on top of a waveguide layer are discussed in detail. This theoretical analysis has important consequences for the optimization of optical chemical sensors and biosensors that are based on fluorescence emission.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (38)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved