OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 22 — Aug. 1, 2000
  • pp: 3978–3983

Comparison of Field Correlations in Multiply Scattered Quasi-Monochromatic Light

Brian G. Hoover  »View Author Affiliations


Applied Optics, Vol. 39, Issue 22, pp. 3978-3983 (2000)
http://dx.doi.org/10.1364/AO.39.003978


View Full Text Article

Acrobat PDF (973 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An experiment is described that directly compares the degradations, with the number of scattering mean free paths, of two field correlations that may be used to form gates for imaging techniques in scattered light: the correlation of the scattered wave with an unscattered reference wave and the correlation of two wave-vector components of the scattered wave itself. Results for 20-μm polymer spheres show that the latter correlation is consistently larger well into the multiple-scattering regime (up to 10 mean free paths) for wave-vector separations less than at least 50 mm<sup>−1</sup> and that the two correlations tend to merge in this scattering regime for larger wave-vector separations.

© 2000 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media

Citation
Brian G. Hoover, "Comparison of Field Correlations in Multiply Scattered Quasi-Monochromatic Light," Appl. Opt. 39, 3978-3983 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-22-3978


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. Géhant and R. Schirrer, “Multiple light scattering and cavitation in two phase tough polymers,” J. Polymer Sci. B 37, 113–126 (1999).
  2. G. Williams, S. C. Rand, T. Hinklin, and R. M. Laine, “Ultraviolet laser action in strongly scattering CE: alumina nanopowder,” in Digest of Topical Meeting on Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), paper CTuG5.
  3. T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).
  4. E. Leith, H. Chen, Y. Chen, D. Dilworth, J. Lopez, R. Masri, J. Rudd, and J. Valdmanis, “Electronic holography and speckle methods for imaging through tissue using femtosecond gated pulses,” Appl. Opt. 30, 4204–4210 (1991).
  5. M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Lett. 18, 950–952 (1993).
  6. E. N. Leith, B. G. Hoover, D. S. Dilworth, and P. P. Naulleau, “Ensemble-averaged Shack–Hartmann wave-front sensing for imaging through turbid media,” Appl. Opt. 37, 3643–3650 (1998).
  7. B. G. Hoover, “Optical determination of field angular correlation for transmission through three-dimensional turbid media,” J. Opt. Soc. Am. A 16, 1040–1048 (1999).
  8. T.-K. Chan, Y. Kuga, and A. Ishimaru, “Subsurface detection of a buried object using angular correlation function measurement,” Waves Random Media 7, 457–465 (1997).
  9. G. Zhang and L. Tsang, “Application of angular correlation function of clutter scattering and correlation imaging in target detection,” IEEE Trans. Geosci. Remote Sens. 36, 1485–1493 (1998).
  10. A. Ishimaru, Wave Propagation and Scattering in Random Media, Chap. 14, IEEE/OUP Series on Electromagnetic Wave Theory (IEEE, Piscataway/Oxford University Press, Oxford, UK, 1997).
  11. E. W. Marchand and E. Wolf, “Angular correlation and the far-zone behavior of partially coherent fields,” J. Opt. Soc. Am. 62, 379–385 (1972).
  12. S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
  13. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, Chap. 2, 2nd enlarged ed., J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984).
  14. W. Steenbergen, M. van Stratum, F. de Mul, and J. Greve, “Coherence effects in laser Doppler blood flowmetry,” in Optical Diagnostics of Biological Fluids and Advanced Techniques in Analytical Cytology, A. V. Priezzhev, T. Asakura, and R. C. Leif, eds., Proc. SPIE 2982, 6–17 (1997).
  15. H. Chen, M. Shih, E. Arons, E. Leith, J. Lopez, D. Dilworth, and P. C. Sun, “Electronic holographic imaging through living human tissue,” Appl. Opt. 33, 3630–3632 (1994).
  16. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999).
  17. C. Yang, K. An, L. T. Perelman, R. R. Dasari, and M. S. Feld, “Spatial coherence of forward-scattered light in a turbid medium,” J. Opt. Soc. Am. A 16, 866–871 (1999).
  18. J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol. 42, 1427–1439 (1997).
  19. K. P. Chan, K. Satori, and H. Inaba, “Laser imaging through scattering media by enhanced heterodyne detection and speckle averaging using 2D detector array,” Electron. Lett. 34, 1101–1103 (1998).
  20. V. M. Agranovich, V. Ya. Chernyak, K. I. Grigorishin, and E. I. Ogievetsky, “Time evolution of transient gratings in a nonlinear film above the surface of a disordered medium,” Phys. Lett. A 165, 289–301 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited