OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 22 — Aug. 1, 2000
  • pp: 3991–3999

Tomographic Extreme-Ultraviolet Spectrographs: TESS

Daniel M. Cotton, Andrew Stephan, Timothy Cook, James Vickers, Valerie Taylor, and Supriya Chakrabarti  »View Author Affiliations


Applied Optics, Vol. 39, Issue 22, pp. 3991-3999 (2000)
http://dx.doi.org/10.1364/AO.39.003991


View Full Text Article

Acrobat PDF (200 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the system of Tomographic Extreme Ultraviolet (EUV) SpectrographS (TESS) that are the primary instruments for the Tomographic Experiment using Radiative Recombinative Ionospheric EUV and Radio Sources (TERRIERS) satellite. The spectrographs were designed to make high-sensitivity {80 counts/s)/Rayleigh [one Rayleigh is equivalent to 106 photons/(4π str cm2 s)}, line-of-sight measurements of the oi 135.6- and 91.1-nm emissions suitable for tomographic inversion. The system consists of five spectrographs, four identical nightglow instruments (for redundancy and added sensitivity), and one instrument with a smaller aperture to reduce sensitivity and increase spectral resolution for daytime operation. Each instrument has a bandpass of 80–140 nm with approximately 2- and 1-nm resolution for the night and day instruments, respectively. They utilize microchannel-plate-based two-dimensional imaging detectors with wedge-and-strip anode readouts. The instruments were designed, fabricated, and calibrated at Boston University, and the TERRIERS satellite was launched on 18 May 1999 from Vandenberg Air Force Base, California.

© 2000 Optical Society of America

OCIS Codes
(000.2170) General : Equipment and techniques
(040.0040) Detectors : Detectors
(110.6960) Imaging systems : Tomography
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

Citation
Daniel M. Cotton, Andrew Stephan, Timothy Cook, James Vickers, Valerie Taylor, and Supriya Chakrabarti, "Tomographic Extreme-Ultraviolet Spectrographs: TESS," Appl. Opt. 39, 3991-3999 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-22-3991


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. L. Burch, “IMAGE mission overview,” Space Sci. Rev. 91, 1–14 (2000).
  2. D. M. Cotton, T. Cook, and S. Chakrabarti, “A single element imaging spectrograph,” Appl. Opt. 33, 1958–1962 (1994).
  3. P. A. Bernhardt, R. P. McCoy, K. F. Dymond, J. M. Picone, R. R. Meier, F. Kamalabadi, D. M. Cotton, S. Chakrabarti, J. S. Vickers, A. W. Stephan, L. Kersley, S. E. Pryse, I. K. Walker, J. A. T. Heaton, C. N. Mitchell, P. R. Straus, H. Na, C. Biswas, G. R. Kronschnalbl, and T. D. Raymund, “Two dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT),” Phys. Plasmas 5, 2010–2021 (1998).
  4. J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,” Math.-Phys. Kl. 69, 262–277 (1917).
  5. F. Kamalabadi, W. C. Karl, J. L. Semeter, D. M. Cotton, T. A. Cook, and S. Chakrabarti, “A statistical framework for space-based EUV ionospheric tomography,” Radio Sci. 34, 437–447 (1999).
  6. E. S. Andreeva, A. V. Galinov, V. E. Kunitsyn, Y. A. Melnichenko, E. E. Tereschenko, M. A. Filimonov, and S. M. Chernyakov, “Radio-tomographic reconstruction of ionization trough in the plasma near the Earth,” J. Exp. Theor. Phys. Lett. 52, 145–148 (1990).
  7. V. E. Kunitsyn and E. D. Tereshchenko, Tomography of the Ionosphere (Nauka, Moscow, 1991).
  8. V. E. Kunitsyn and E. D. Tereshchenko, “Tomography of the ionosphere,” Antennas Propag. Mag. 34(5), 22–32 (1992).
  9. S. E. Pryse and L. Kersley, “A preliminary experimental test of ionospheric tomography,” J. Atmos. Terr. Phys. 54, 1007–1012 (1992).
  10. S. E. Pryse, L. Kersley, R. L. Rice, C. D. Russell, and I. K. Walker, “Tomographic imaging of the ionospheric mid-latitude trough,” Ann. Geophys. 11, 144–149 (1993).
  11. T. D. Raymund, S. E. Pryse, L. Kersley, and J. A. T. Heaton, “Tomographic reconstruction of ionospheric electron density with European incoherent scatter radar verification,” Radio Sci. 28, 811–817 (1993).
  12. J. C. Foster, J. A. Klobuchar, V. E. Kunitsyn, E. D. Tereshchenko, E. S. Andreeva, M. J. Buonsanto, P. Fougere, J. M. Holt, B. Z. Khudukon, W. Pakula, and T. D. Raymund, “Russian–American tomography experiment,” Int. J. Imaging Syst. Technol. 5, 148–159 (1994).
  13. S. C. Solomon, P. B. Hayes, and V. J. Abreu, “Tomographic inversion of satellite photometry,” Appl. Opt. 23, 3409–3414 (1984).
  14. S. C. Solomon, P. B. Hayes, and V. J. Abreu, “Tomographic inversion of satellite photometry. 2,” Appl. Opt. 23, 3409–3414 (1984).
  15. I. C. McDade and E. J. Llewellyn, “Inversion techniques for recovering two-dimensional distributions of auroral emission rates from tomographic rocket photometer measurements,” Can. J. Phys. 69, 1059–1068 (1991).
  16. I. C. McDade, N. D. Lloyd, and E. J. Llewellyn, “A rocket tomography measurement of the N2+ 3914 Å emission rates within an auroral arc,” Planet. Space Sci. 39, 895–906 (1991).
  17. R. A. Keski-Kuha, J. F. Osantowski, H. Herzig, J. S. Gum, and A. R. Toft, “Normal incidence reflectance of ion beam deposited SiC films in the EUV,” Appl. Opt. 27, 2815–2816 (1988).
  18. P. Jelinsky and S. Jelinsky, “Low reflectance EUV materials—a comparative study,” Appl. Opt. 26, 613–615 (1987).
  19. J. Tom, D. M. Cotton, B. C. Bush, R. Chung, and S. Chakrabarti, “Rigid lightweight optical bench for a spaceborne FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund and R. E. Roghschild, eds., Proc. SPIE 1549, 302–307 (1991).
  20. S. Chakrabarti, F. Paresce, S. Bowyer, R. Kimble, and S. Kumar, “The extreme ultraviolet day airglow,” J. Geophys. Res. 88, 4898–4904 (1983).
  21. S. Chakrabarti, R. Kimble, and S. Bowyer, “Spectroscopy of the EUV (350–1400 Å) nightglow,” J. Geophys. Res. 89, 5660–5664 (1984).
  22. R. F. Malina and K. R. Coburn, “Comparative lifetesting results for microchannel plates in windowless EUV photon detectors,” IEEE Trans. Nucl. Sci. NS-31, 404–407 (1984).
  23. J. S. Vickers, D. M. Cotton, T. A. Cook, and S. Chakrabarti, “Gas ionization solar spectral monitor (GISSMO),” Opt. Eng. 32, 3126–3131 (1993).
  24. R. Hemphill, J. Edelstein, and D. Rogers, “Chemical method to increase extreme ultraviolet microchannel-plate quantum efficiency,” Appl. Opt. 36, 1421–1426 (1997).
  25. O. H. W. Siegmund, E. Everman, J. V. Vallerga, J. Sokolowski, and M. Lampton, “Ultraviolet quantum detection efficiency of potassium bromide as an opaque photocathode applied to microchannel plates,” Appl. Opt. 26, 3607–3614 (1987).
  26. T. Cook, V. Taylor, S. Chakrabarti, and F. Kamalabadi are preparing a paper to be called “A high resolution ultraviolet spectral imaging system.”

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited